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Bounds on Transverse Momentum Dependent Distribution and Fragmentation Functions
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We give bounds on the distribution and fragmentation functions that appear at leading order in deep
inelastic one-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow
from positivity of the defining matrix elements and are an important guidance in estimating the magnitude
of the azimuthal and spin asymmetries in these processes.

PACS numbers: 13.85.Qk, 13.75.–n
In deep-inelastic processes the transition from hadrons
to quarks and gluons is described in terms of distribution
and fragmentation functions. For instance, at leading order
in the inverse hard scale 1�Q, the cross section for inclu-
sive electroproduction e2H ! e2X is given as a charge
squared weighted sum over quark distribution functions,
which describe the probability of finding quarks in hadron
H. In electron-positron annihilation, the one-particle
inclusive cross section for e1e2 ! hX is given as a
charge squared weighted sum over quark and antiquark
fragmentation functions, describing the decay of the pro-
duced (anti)quarks into hadron h.

The distribution functions for a quark can be obtained
from the light cone correlation function [1–3]
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depending on the light cone fraction x � p1�P1. To
be precise, the lightlike directions n1 and n2, satisfy-
ing n2

1 � n2
2 � 0 and n1 ? n2 � 1, define the light cone

coordinates a6 � a ? n7. The hadron momentum P is
chosen so that it has no components orthogonal to n1 or
n2, thus the transverse hadron momentum PT � 0. The
correlator contains the soft parts appearing in hard scatter-
ing processes, and is related to the forward amplitude for
antiquark-hadron scattering (see Fig. 1). The relevant part
is Fn�2 � Fg1. Inserting a complete set of intermediate
states and generalizing to off-diagonal spin, one obtains
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where c1 � P1c � 1
2g2g1c is the good component of

the quark field [4]. This representation shows that the
correlation functions have a natural interpretation as light
cone momentum densities.

In order to study the correlation function in a spin 1�2
target one introduces a spin vector S that parametrizes the
spin density matrix r�P, S�. It satisfies P ? S � 0 and
S2 � 21 (spacelike) for a pure state, 21 , S2 # 0 for a
mixed state. Using l � MS1�P1 and the transverse spin
vector ST , the condition becomes l2 1 S2

T # 1, as can be
seen from the rest-frame expression S � �0, ST , l�. The
precise equivalence of a 2 3 2 matrix M̃ss0 in the target
spin space and the S-dependent function M�S� is M�S� �
Tr�r�S�M̃�. Explicitly, the S-dependent function M�S� �
MO 1 lML 1 S1

T M1
T 1 S2

TM2
T corresponds to a matrix,

which in the target rest frame with as basis the spin 1�2
states with l � 11 and l � 21 becomes

M̃ss0 �

√
MO 1 ML M1

T 2 iM2
T

M1
T 1 iM2

T MO 2 ML

!
. (3)

From Eq. (2) follows that after transposing in Dirac space
and subsequently extending the matrix M�S� � �Fg1�T
to the target spin space gives a matrix in the combined
Dirac ≠ target spin space which satisfies yyMy $ 0 for
any vector y in that combined space.

The most general form for the quantity Fg1 for a spin
1�2 target in terms of the spin vector is

F�x�g1 � 	 f1�x� 1 lg1�x�g5 1 h1�x�g5S�T 
P1 , (4)

where the functions f1, g1, and h1 are the leading or-
der quark distribution functions [5]. By tracing over the
Dirac indices one projects out f1, which is the quark mo-
mentum density [see Eq. (2)]. By writing g5 as the dif-
ference of the chirality projectors PR�L � 1

2 �1 6 g5� it
follows that in a longitudinally polarized target (l fi 0)

Φ(p;P,S)

p p

P P

FIG. 1. Matrix element for distribution functions.
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g1 is the difference of densities for right-handed and left-
handed quarks. By writing gig5 as the difference of the
transverse spin projectors P"�# � 1

2 �1 6 gig5�, it follows
that in a transversely polarized target (ST fi 0) h1 is the
difference of quarks with transverse spin along and oppo-
site the target spin [6–8]. Since f1�x� is the sum of the
densities, it is positive and gives bounds jg1�x�j # f1�x�
and jh1�x�j # f1�x�.

By considering the combined Dirac ≠ target spin space
stricter bounds can be found. As mentioned above, we
need to consider the function M�S� � �Fg1�T in Dirac
space. For this we use a chiral representation. In that
representation the good projector P1 leaves only two (in-
dependent) dirac spinors, one right-handed (R) and one
left-handed (L). On this (two-dimensional) basis of good
R and L spinors the matrix M � �F�x�g1�T obtained
from Eq. (4) is given by

Mij �

√
f1�x� 1 lg1�x� �S1

T 1 iS2
T �h1�x�

�S1
T 2 iS2

T �h1�x� f1�x� 2 lg1�x�

!
. (5)

Next we make the spin structure of the target explicit as
outlined in Eq. (3), yielding on the basis 1R, 2R, 1L,
and 2L

M̃ �

0BBB@
f1 1 g1 0 0 2h1

0 f1 2 g1 0 0
0 0 f1 2 g1 0

2h1 0 0 f1 1 g1

1CCCA .

(6)

From the positivity of the diagonal elements one recovers
the trivial bounds f1�x� $ 0 and jg1�x�j # f1�x�, but re-
quiring the eigenvalues of the matrix to be positive gives
the stricter Soffer bound [9]

jh1�x�j #
1
2

� f1�x� 1 g1�x�� . (7)

Analogously bounds can be obtained for transverse mo-
mentum dependent distribution and fragmentation func-
tions. Transverse momenta of partons play an important
role in hard processes with more than one hadron [10].
Examples are one-particle inclusive deep-inelastic electro-
production, e2H ! e2hX [11], or Drell-Yan scattering,
H1H2 ! m1m2X [12].

The soft parts involving the distribution functions are
contained in the light front correlation function
Fij�x, pT � �
Z dj2d2jT

�2p�3 eip?j�P, Sjcj�0�ci�j�jP, S�
Ç
j1�0

, (8)

depending on x � p1�P1 and the quark transverse momentum pT in a target with PT � 0. For the description of quark
fragmentation one needs [13]

Dij�z, kT � �
X
X

Z dj2d2jT

�2p�3 eik?j Tr�0jci�j�jPh, X� �Ph, Xjcj�0�j0�
Ç
j1�0

, (9)
(see Fig. 2) depending on z � P1
h �k1 and the quark trans-

verse momentum kT leading to a hadron with PhT � 0. A
simple boost shows that this is equivalent to a quark pro-
ducing a hadron with transverse momentum Ph� � 2zkT

with respect to the quark. Notice that the expressions given
here are in a light cone gauge A1 � 0. In a general gauge,
a gauge link running along n2 needs to be included. In
the presence of transverse momentum dependence [14] and
hence separation in jT , the links run to light cone infinity
j2 � 6`.

Separating the terms corresponding to unpolarized (O),
longitudinally polarized (L), and transversely polarized
targets (T ), the most general parametrizations with pT de-
pendence, relevant at leading order, are
FO�x, pT �g1 �
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FL�x, pT �g1 �

Ω
lg1L�x, p2

T �g5 1 lh�
1L�x, p2

T �g5
p�T

M

æ
P1 , (11)
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M
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As before, f..., g..., and h... indicate unpolarized, chirality,
and transverse spin distributions. The subscripts L and T
indicate the target polarization, and the superscript � sig-
nals explicit presence of transverse momentum of partons.
Using the notation f �1��x, p2

T � � �p2
T �2M2�f�x, p2

T �,
one sees that f1�x, p2

T �, g1�x, p2
T � � g1L�x, p2

T �, and
h1�x, p2
T � � h1T �x, p2

T � 1 h
��1�
1T �x, p2

T � are the functions
surviving pT integration.

Analogously, D is parametrized in terms of unpolarized,
chirality, and transverse-spin fragmentation functions [11],
denoted by capital letters D..., G..., and H..., respectively.
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FIG. 2. Matrix element for fragmentation functions.
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Time-reversal invariance has not been imposed in the above
parametrization, allowing for nonvanishing T -odd func-
tions f�

1T and h�
1 . Possible sources of T -odd effects in the

initial state have been discussed in Refs. [15]. In the final
state time-reversal invariance cannot be imposed [16–18],
leading to nonvanishing fragmentation functions D�

1T [11]
and H�

1 [19].
To put bounds on the transverse momentum dependent

functions, we again make the matrix structure explicit. One
finds for M � �F�x, pT �g1�T the full spin matrix M̃ to be
0BBBBBB@

f1 1 g1L
jpT j

M eif�g1T 1 if�
1T � jpT j

M e2if�h�
1L 1 ih�

1 � 2h1
jpT j

M e2if�g1T 2 if�
1T � f1 2 g1L

jpT j
2

M2 e22ifh�
1T 2

jpT j

M e2if�h�
1L 2 ih�

1 �
jpT j

M eif�h�
1L 2 ih�

1 � jpT j
2

M2 e2ifh�
1T f1 2 g1L 2

jpT j

M eif�g1T 2 if�
1T �

2h1 2
jpT j

M eif�h�
1L 1 ih�

1 � 2
jpT j

M e2if�g1T 1 if�
1T � f1 1 g1L

1CCCCCCA ,
where f is the azimuthal angle of pT . First of all, this
matrix is illustrative as it shows the full quark helicity
structure accessible in a polarized nucleon [20], which is
equivalent to the full helicity structure of the forward
antiquark-nucleon scattering amplitude. Bounds to assure
positivity of any matrix element can, for instance, be ob-
tained by looking at the one-dimensional subspaces, giv-
ing the trivial bounds f1 $ 0 and jg1Lj # f1. From the
two-dimensional subspace one finds [omitting the �x, p2

T �
dependences]

jh1j #
1
2

� f1 1 g1L� # f1 , (13)

jh
��1�
1T j #

1
2

� f1 2 g1L� # f1 , (14)

�g�1�
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��1�
1T �2 #

p2
T

4M2 � f1 1 g1L� � f1 2 g1L�

#
p2

T

4M2 f2
1 , (15)

�h��1�
1L �2 1 �h��1�

1 �2 #
p2

T

4M2 � f1 1 g1L� � f1 2 g1L�

#
p2

T

4M2 f2
1 . (16)

Besides the Soffer bound, new bounds for the distribution
functions are found. In particular, one sees that functions
like g

�1�
1T and h

��1�
1L appearing in azimuthal asymmetries in
leptoproduction are proportional to jpT j for small pT . In
the case of the T -odd fragmentation functions, the Collins
function, H

��1�
1 , describing fragmentation of a transversely

polarized quark into an unpolarized or spinless hadron, for
instance, a pion, is bounded by �jPp�j�2zMp �D1�z, P2

p��
while the other T -odd function D

��1�
1T , describing fragmen-

tation of an unpolarized quark into a polarized hadron such
as a L, is given by �jPL�j�2zML�D1�z, P2

L��.
Before sharpening these bounds via eigenvalues, it is

convenient to introduce two positive definite functions
F�x, p2

T � and G�x, p2
T � such that f1 � F 1 G and g1 �

F 2 G and define

h1 � aF , (17)

h
��1�
1T � bG , (18)

g
�1�
1T 1 if

��1�
1T � g

jpT j

M

p
FG , (19)

h
��1�
1L 1 ih

��1�
1 � d

jpT j

M

p
FG , (20)

where the x and p2
T dependent functions a, b, g, and d

have absolute values in the interval �21, 1�. Note that a

and b are real valued but g and d are complex valued,
the imaginary part determining the strength of the T -odd
functions. Actually, one sees that the T -odd functions f�

1T
and h�

1 could be considered as imaginary parts of g1T and
h�

1L, respectively.
Next we sharpen these bounds using the eigenvalues of

the matrix, which are given by
e1,2 � �1 2 a�F 1 �1 1 b�G 6
p

4FGjg 1 dj2 1 ��1 2 a�F 2 �1 1 b�G�2 , (21)

e3,4 � �1 1 a�F 1 �1 2 b�G 6
p

4FGjg 2 dj2 1 ��1 1 a�F 2 �1 2 b�G�2 . (22)
Requiring them to be positive can be converted into the
conditions

F 1 G $ 0 , (23)

jaF 2 bGj # F 1 G, i.e., jh1T j # f1 , (24)
jg 1 dj2 # �1 2 a� �1 1 b� , (25)

jg 2 dj2 # �1 1 a� �1 2 b� . (26)
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FIG. 3. Allowed region (shaded) for a and b depending on
g and d.

It is interesting for the phenomenology of deep inelastic
processes that a bound for the transverse-spin distribution
h1 is provided not only by the inclusively measured func-
tions f1 and g1, but also by the functions g1T and h�

1L, re-
sponsible for specific azimuthal asymmetries [11,21]. This
is illustrated in Fig. 3. The same goes for fragmentation
functions, where, for instance, the magnitude of H�

1 con-
strains the magnitude of H1 [22]. Recently SMC [23],
HERMES [24], and LEP [25] have reported preliminary re-
sults for azimuthal asymmetries. More results are likely to
come in the next few years from HERMES, HERA, RHIC,
and COMPASS experiments. Although much theoretical
work is needed, for instance, on factorization, scheme am-
biguities, and the stability of the bounds under evolution
[26], these future experiments may provide us with the
knowledge of the full helicity structure of quarks in a nu-
cleon. The elementary bounds derived in this paper can
serve as important guidance to estimate the magnitudes of
asymmetries expected in the various processes.

We thank Elliot Leader for useful discussions. This
work is part of the research program of the Foundation for
Fundamental Research on Matter (FOM) and the Dutch
Organization for Scientific Research (NWO). It is also
part of the TMR program ERB FMRX-CT96-0008.
[1] D. E. Soper, Phys. Rev. D 15, 1141 (1977); Phys. Rev. Lett.
43, 1847 (1979).

[2] R. L. Jaffe, Nucl. Phys. B229, 205 (1983).
[3] A. V. Manohar, Phys. Rev. Lett. 65, 2511 (1990).
[4] J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970).
[5] Other common notations for a quark flavor q are f

q
1 �x� �

q�x�, g
q
1 �x� � Dq�x�, and h

q
1 �x� � DT q�x�.

[6] X. Artru and M. Mekhfi, Z. Phys. 45, 669 (1990).
[7] J. L. Cortes, B. Pire, and J. P. Ralston, Z. Phys. C 55, 409

(1992).
[8] R. L. Jaffe and X. Ji, Nucl. Phys. B375, 527 (1992).
[9] J. Soffer, Phys. Rev. Lett. 74, 1292 (1995).

[10] J. P. Ralston and D. E. Soper, Nucl. Phys. B152, 109 (1979).
[11] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197

(1996); Nucl. Phys. B484, 538(E) (1997).
[12] R. D. Tangerman and P. J. Mulders, Phys. Rev. D 51, 3357

(1995).
[13] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445

(1982).
[14] D. Boer and P. J. Mulders, Nucl. Phys. B569, 505 (2000).
[15] Possible T-odd effects could arise from soft initial state

interactions as outlined in D. Sivers, Phys. Rev. D 41, 83
(1990), and Phys. Rev. D 43, 261 (1991). Also gluonic
poles might lead to the presence of T -odd functions; see
N. Hammon, O. Teryaev, and A. Schäfer, Phys. Lett. B 390,
409 (1997), and D. Boer, P. J. Mulders, and O. V. Teryaev,
Phys. Rev. D 57, 3057 (1998).

[16] A. De Rújula, J. M. Kaplan, and E. de Rafael, Nucl. Phys.
B35, 365 (1971).

[17] K. Hagiwara, K.-I. Hikasa, and N. Kai, Phys. Rev. D 27,
84 (1983).

[18] R. L. Jaffe and X. Ji, Phys. Rev. Lett. 71, 2547 (1993).
[19] J. Collins, Nucl. Phys. B396, 161 (1993).
[20] M. Boglione and P. J. Mulders, Phys. Rev. D 60, 054007

(1999).
[21] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).
[22] R. L. Jaffe, Phys. Rev. D 54, 6581 (1996). Here the nota-
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