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Computation of the Vortex Free Energy in SU(2) Gauge Theory
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We present the first measurement of the vortex free-energy order parameter at weak coupling for SU(2)
in simulations employing multihistogram methods. The result shows that the excitation probability for a
sufficiently thick vortex in the vacuum tends to unity. This is rigorously known to provide a necessary
and sufficient condition for maintaining confinement at weak coupling in SU�N� gauge theories.

PACS numbers: 12.38.Gc, 11.15.Ha, 12.38.Aw
The vortex free-energy (also known as magnetic-flux
free-energy) order parameter in gauge theories is defined as
the ratio of the partition function in the presence of a topo-
logically trapped vortex excitation (introduced by a sin-
gular gauge transformation) to that without it. Its Fourier
transform with respect to the center [Z�N�] of the gauge
group [SU�N�] defines the so-called electric-flux free en-
ergy which is rigorously known to provide an upper bound
on the Wilson loop. These flux order parameters can char-
acterize all possible phases of a (pure) gauge theory, and
furthermore do this in terms of the behavior of the excita-
tion expectation for a vortex. They were first considered
in the study of gauge theories in [1], though the use of
the analogous quantities in statistical mechanics goes back
much further [2]. The idea that vortex configurations un-
derlie confinement at weak coupling has a long history,
and has been the subject of intense recent activity. (We
refer to Ref. [3] for a review of recent developments and
references to early and recent work.)

In view of the physical significance of the magnetic-flux
free energy, it may appear surprising that it has not been
measured in simulations over the last 20 years. Accurate
determination of (differences of) free energies in gauge
theories, however, is well known to be difficult. In fact,
it is at first not quite clear how one should go about com-
puting such totally nonlocal (lattice-length) quantities. We
present here a computation for the group SU�2� based on
multihistogram methods [4]. Such a method was recently
used in Ref. [5] to compute the free energy of a pair of
Z�N� monopoles, a quantity related to the ’t Hooft loop
operator. Our result demonstrates that the excitation ex-
pectation for a sufficiently extended “thick” vortex at large
b is essentially unity. This is the feature responsible for
maintaining the confining phase in SU�N� gauge theories
even at weak coupling.

We work on a d-dimensional hypercubic lattice L of
size L1 3 · · · 3 Ld with periodic boundary conditions in
all directions. We generally denote bonds by b, plaquettes
by p, cubes by c, etc. The plaquette action is denoted by
Ap�Up�, where, as usual, Up �

Q
b[p Ub , the product of

the bond variables around the plaquette; for the minimal
0031-9007�00�85(4)�704(4)$15.00
(Wilson) action Ap�Up� � 2bRe trUp . The trace “tr” is
defined to include a 1�N normalization.

A coclosed set of plaquettes (2 cells) is a closed set of
�d 2 2� cells on the dual lattice. Thus, in d � 3, it is a
closed loop of dual bonds; in d � 4, it is a closed two-
dimensional surface of dual plaquettes. For fixed m, n, let
Vmn denote a coclosed set of plaquettes that winds through
every two-dimensional �mn� plane of L, i.e., a topologi-
cally nontrivial plaquette set wrapped around the periodic
lattice (d torus) in the �d 2 2� directions l fi m, n per-
pendicular to m, n. This is depicted in Fig. 1(a), where the
short lines represent the plaquettes in V , with the horizon-
tal axis representing the xm, xn directions, and the vertical
axis the remaining �d 2 2� perpendicular directions.

Define the partition function

ZL�tmn� �
Z Y

b

dUb exp

√
2

X
p”Vmn

Ap�Up�

2
X

p[Vmn

Ap�tmnUp�

!
, (1)

where the plaquette action Ap�Up� is replaced by the
“twisted” action Ap�tmnUp� for each plaquette of Vmn .
Here the “twist” tmn [ Z�N� is an element of the center.

(a) (b)
FIG. 1. Stack of plaquettes carrying twist winding around the
periodic lattice. (a) and (b) are equivalent sets.
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There are thus �N 2 1� different nontrivial choices for
tmn . The trivial element tmn � 1 is the ordinary partition
function ZL�1� � ZL.

As indicated by the notation on the left hand side of (1),
the exact position or shape of Vmn is irrelevant; the only
dependence is on the presence of the Z�N� flux winding
through each �mn� plane. It is indeed easily seen that Vmn

can be moved around and distorted by a shift of integra-
tion variables, but not removed; it is rendered topologically
stable by winding completely around the lattice [Fig. 1(b)].
By the same token, introducing two twists, tmn on Vmn

and t0
mn on V 0

mn in (1), is equivalent to introducing one
twist t00

mn � tmnt0
mn since Vmn and V 0

mn can be brought
together by a shift of integration variables (Fig. 2). This
expresses the modN conservation of the Z�N� flux intro-
duced by the twist. Thus, for N � 2, any odd number of
such (nontrivial) twists is equivalent to one, and any even
number to none.

The magnetic-flux free energy order parameter is now
defined as

exp�2Fmg�tmn�� �
ZL�tmn�

ZL

�

*
exp

√
2

X
p[Vmn

�Ap�tmnUp�

2 Ap�Up��

!+
. (2)

Generalizations of (1) and (2) may be considered by
introducing sets Vkl for several or all of the 1

2d�d 2 1�
possible distinct choices of planes �kl�.

The twist amounts to a discontinuous (singular) SU�N�
gauge transformation on the configurations in (1) with
multivaluedness in Z�N� [so it is single valued in SU�N��
Z�N�], i.e., the introduction of a p1�SU�N��Z�N�� �
Z�N� vortex. The set Vmn represents the topological
obstruction to having single valuedness everywhere.
Equation (1) is then the partition sum for the system with
a topologically stable vortex completely winding around
the lattice, and Eq. (2) is the normalized expectation for

FIG. 2. Equivalent sets V reflecting modN conservation of
the twist (N � 2).
the excitation of such a vortex. Hence, it is also referred
to as the vortex free energy.

Choosing, say, �mn� � �12� in (1), we now drop the
mn subscript. One is interested in the behavior of (2) in
the large volume limit (in the van Hove sense), i.e., as
the size of the lattice increases in any power law fashion,
e.g., Lm � 2lam for some fixed choice of positive expo-
nents am, integer l ! `. Let A � L1L2 be the area of
each �12� plane, and L � L3 . . . Ld the lattice volume in
the perpendicular directions. One is interested, in particu-
lar, in L $ A. The twist introduces a cost in action lo-
calized on the plaquettes in V . This cost, proportional
to L, may be lowered if there are configurations that con-
tribute with finite measure in the integral (2), and allow
the flux introduced by the twist to spread in the two direc-
tions perpendicular to V , so that the action is closer to its
minimum, in other words, if there is finite probability for
exciting a “thick” vortex.

For sufficiently large lattices, there are then the follow-
ing three possibilities (t fi 1):

�a� exp�2Fmg�t�� � exp�2a�b, t�L� ,

�b� exp�2Fmg�t�� � exp

µ
2bc�t�

L
A

∂
,

�c� exp�2Fmg�t�� � exp�2cLe2r�b,t�A� .

In case (a) the magnetic flux stays focused in a thin vortex;
this describes a Higgs phase. In (b) the flux can spread in
a Coulomb-like fashion lowering the free-energy cost; this
describes a massless Coulomb phase, where the long dis-
tance behavior is accurately given by weak coupling per-
turbative expansion. In (c) the gain in thickening the vortex
is exponential; this characterizes the confinement phase. It
is important to note that, in contrast to (a) and (b), only (c)
gives a value which survives and, in fact, tends (exponen-
tially) to unity for all ways of taking the thermodynamic
limit as described above; this is the signature of the con-
finement phase.

Since our computation below is for N � 2, we now
write explicit formulas only for this case. The Fourier
transform of (2) with respect to Z�N� is known as the
electric-flux free energy. For N � 2 this is simply

exp�2Fel� �
X

t�1,21

t exp�2Fmg�t��

� 1 2 exp�2Fmg�21�� . (3)

Consider now a rectangular loop C in a �12� plane.
Then, for any reflection positive plaquette action, the
Wilson loop obeys the bound [6]

�tr�U�C��	 # �exp�2Fel��AC�A, (4)

where AC is the minimal area bounded by C. Equation (4)
shows that confining behavior (c) for the vortex free en-
ergy implies area law for the Wilson loop with string ten-
sion bounded from below by the excitation expectation for
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a vortex. So confining behavior for the vortex free energy
is a sufficient condition for linear asymptotic quark con-
finement.

Placing suitable constraints in the functional measure in
(1) which forbid the spreading of flux across �12� planes,
thus eliminating the occurrence of thick vortices, results in
the nonconfining behavior of type (a) above [7]. In this
case (4) cannot tell us anything about the Wilson loop. To
show loss of confining behavior for the Wilson loop it-
self in the presence of such constraints, one needs a lower
bound on it which exhibits perimeter law. This was re-
cently proven for large b in [8]. Thus the occurrence of
thick vortices is also a necessary condition for confinement
at weak coupling.

Our measurement of (2) for SU�2� was done by an ap-
plication of a multihistogram method [4]. From now on
we restrict the form of the action to the Wilson action

Ap�Up� � 2b trUp , (5)

which was used in the measurement. The basic quantity
in our procedure is the density of states w�S� as a function
of the total action S along the twisted plaquettes. This is
defined as

w�S� �
Y Z

dUb exp

µ
b

X
p”V

trUp

∂
d

µ
S 1

X
p[V

trUp

∂
.

(6)

If w�S� is known, the partition function can easily be com-
puted for any coupling bV along V as

Z�bV � �
Z

dS w�S�e2bV S . (7)

In particular, we are interested in Z�b�, the untwisted, and
Z�2b�, the twisted partition function. The problem is that
the dominant contribution for Z�bV � comes from differ-
ent regions of S, depending on bV . Therefore one needs
to know w�S� to a good accuracy in a wide range of S. A
simulation done at a certain value of bV , however, will
give accurate information on w�S� only in a narrow
neighborhood of �S	bV

. The main idea of the Ferrenberg-
Swendsen multihistogram method is to combine informa-
tion on w�S� coming from simulations at different bV ’s
to obtain w�S� in a wide range of S accurately. This can
be done by noting that for a given bV the probability
distribution of S, P�S, bV �, goes as

P�S, bV � ~
1

Z�bV �
e2bV S , (8)

and that P�S, bV � can be directly measured by making
a histogram of the action along V . In this way, any
simulation at a certain bV gives an estimate for w�S�,

w�S� � P�S, bV �ebV SZ�bV � . (9)

These estimates coming from simulations with different
bV ’s (say b1, b2, . . . , bK ) can then be averaged with suit-
able (S dependent) weights to minimize the error in w�S�
706
over a given range of S. This results in the following set
of coupled equations:

w�S� �

PK
n�1 P�S, bn�PK
n�1

exp�2bnS�
Z�bn�

, (10)

Z�bn� �
Z

dS e2bnSw�S� , (11)

which can be solved by iteration starting from Z�bn� � 1.
To optimize the procedure, one needs a sufficient over-
lap between the P�S, bn� distributions corresponding to
successive bn’s. Since the distributions quickly become
narrower with increasing lattice size, the number of simu-
lations, K , also needs to be increased accordingly. This
makes our measurement very expensive on large lattices.
For the largest lattices we typically used K � 40 80 simu-
lations with the bn’s equally spaced in the 2b 1b range.

The result of the computation for (2) is shown in Fig. 3.
We have performed the computation on lattices of equal
linear size in all directions for three different values of
b. The lattice spacings are a � 0.165 fm, a � 0.119 fm,
and a � 0.085 fm for b � 2.3, b � 2.4, and b � 2.5,
respectively.

Notice that, with the lattice size expressed in physical
units, the measurements for different b’s fall on the same
curve, as they should. This indicates that the universal
curve has been reached, and will not change at larger beta.
Also, the onset of the sharp rise around 0.7 fm is in the re-
gion of the finite temperature deconfining phase transition
providing another indirect consistency check.

The approach to unity for sufficiently large lattice size
in Fig. 3 is striking. In comparison, for Coulomb-like
massless behavior, an upper bound obtained by action
minimizing within the spin-wave approximation gives
� exp�2b�p�2�2� 
 0.085 at b � 2.3. The points
forming the upper part of the plot are well within the

FIG. 3. SU�2� vortex free energy (2) vs lattice size.
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confinement region. The string tension values extracted
from the vortex free energy in the confining region are
consistent with the values from heavy-quark potential
calculations (see e.g., [9]), though still better precision in
the measurement of the vortex free energy is required for
precise quantitative comparisons.

In conclusion, the result of our computation clearly
demonstrates that the weighted expectation for the exci-
tation of a sufficiently thick vortex in the vacuum tends to
one. In this sense the vacuum can indeed be viewed as
having a “condensate” of thick long vortices. This is suf-
ficient for maintaining confinement at large b in SU�N�
gauge theories. As mentioned, rigorous results also show
it to be necessary: were the behavior for (2) exhibited
in Fig. 3 not to occur, confinement at large beta would
be lost.
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