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Robustness of Wave Functions of Interacting Many Bosons in a Leaky Box
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We study the robustness, against the leakage of bosons, of wave functions of interacting many bosons
confined in a finite box by deriving and analyzing a general equation of motion for the reduced density
operator. We identify a robust wave function that remains a pure state, whereas other wave functions,
such as the Bogoliubov’s ground state and the ground state with a fixed number of bosons, evolve into
mixed states. Although these states all have the off-diagonal long-range order, and the same energy, we
argue that only the robust state is realized as a macroscopic quantum state.
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When a quantum system is subject to perturbations from
its environment, most wave functions decohere, and only
an exceptional wave function(s) remains pure. For quan-
tum systems with a single degree of freedom � f � 1�, this
robust wave function is a coherent state [1,2]. For example,
when a coherent state ja� of single-mode photons passes
through an absorptive medium, the final state is also a co-
herent state ja0�, which was attenuated �ja0j , jaj� by
the absorption [1]. It was also argued that, for a f � 1
system, coherent states produce the least entropy in the
environment, thus being stable [2]. Since these conclu-
sions are based on analyses of f � 1 systems, a natural
question is: Are they applicable to macroscopic systems,
i.e., to f ¿ 1 interacting systems? Moreover, we must
identify which coherent states are robust, because there
are many choices of the coordinate (among many degrees
of freedom) by which a coherent state is defined. Further-
more, for massive bosons the superselection rule (SSR)
forbids superpositions of states with different numbers of
bosons. Hence, we must clarify how coherent states can
be compatible with the SSR. The purpose of this Letter
is to answer these questions for condensates of interacting
many bosons, which (or equivalents of which) are observed
in many physical systems such as liquid He [3], quantum
Hall [4], excitons [5], and trapped atoms [6]. We also dis-
cuss the symmetry breaking in view of the robustness.

We consider many bosons which interact with each other
repulsively. We assume that the bosons are confined in a
large, but finite, box of volume V , which is placed in a
huge room of volume V ¿ V , which we call the envi-
ronment. Suppose that the potential of the walls of the
box is not high enough, so that the box and the environ-
ment exchange bosons via tunneling processes at a small
rate (flux) J . Let teq denote the time scale after which
the total system, the box plus the environment, reaches
the equilibrium state. We are not interested in the time
region t $ teq because the equilibrium state is just a uni-
form state that is determined solely by the initial state of
the environment (because V ¿ V ). We therefore exam-
ine the transient region for which t ø teq, in order to
discuss the robustness of an initial state jf�0��, which is
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prepared at t � 0, of the box. Depending on the choice
of the initial state jfE�0��E of the environment, the box
state may be affected either drastically or moderately. For
example, a moderate situation is that jfE�0��E has the
same density n of bosons as jf�0��. In such a case, n
of the box will be kept constant for all t. To discuss
the robustness, however, we consider the severest situa-
tion, where the environment is initially in the vacuum state
j0�E of bosons, so that bosons escape from the box con-
tinuously. If a box state is robust in this severest case,
it would also be robust in other cases. Hence, the total
wave function at t � 0 is jF�0��total � jf�0�� ≠ j0�E. We
decompose (the r dependence of) the boson field that is
defined on V 1 V as ĉtotal�r� � ĉ�r� 1 ĉE�r�. Here,
ĉ�r� localizes in the box, whereas the low-energy com-
ponent of ĉE�r� localizes in the environment [7]. Accord-
ingly, the Hamiltonian of the total system is decomposed as
Ĥtotal � Ĥ 1 ĤE 1 ĤSE. Here, Ĥ �ĤE� is a function of
ĉ �ĉE� only, describing interacting bosons in the box (en-
vironment). On the other hand, ĤSE includes both ĉ and
ĉE, describing the ĉ-ĉE interaction. If the leakage flux
J is small, the probability of finding two or more bosons
simultaneously in a wall of the box is negligible, and thus
the dominant term of ĤSE takes the following form:

ĤSE � l
Z

d3r ĉ
y
E�r�w�r�ĉ�r� 1 H.c. (1)

Here, w�r� represents the shapes of the walls (w � 1 in
the walls, w � 0 in other regions), whose potential height
is characterized by a parameter l. Details of w are ir-
relevant because they are all absorbed in the value of j
[Eq. (9) below]. In the time region of interest �t ø teq�,
the ĉE-ĉE interaction should be unimportant because n of
the environment remains zero. On the other hand, we must
treat the ĉ-ĉ interaction appropriately. For this purpose,
we use the decomposition formula for ĉ [8–10]:

ĉ � Ĵ 1 ĉ 0, (2)

where Ĵ is an operator satisfying

ĴjN , G� �
p

N jjN 2 1, G� , (3)
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where jN , G� denotes the ground state that has exactly N
bosons [8,9,11], which we call the number state of inter-
acting bosons (NSIB), and

j � �N 2 1, GjĉjN , G��
p

N (4)

is a hallmark of the condensation:
p

N j � O �1�
for condensed states, whereas

p
N j � O �1�

p
V � for

normal states [8,9,12]. We here consider the condensed
states. Since ĉ alters N exactly by 1, Eq. (4) means that
�N 2 DN , GjĉjN , G� �

p
N jdDN ,1 for all DN such that

jDN j ø N . It then follows from Eqs. (2) and (3) that

�N 2 DN , Gjĉ 0jN , G� � 0 �for jDN j ø N� . (5)

Namely, ĉ 0 transforms jN , G� into excited states.
For weakly interacting bosons, the explicit forms

of the NSIB were given in Refs. [9,11], and that of
Ĵ was given in [9]. Because of the boson-boson
interaction, they are rather complicated functions of
bare operators âk: jN , G� � �1�

p
N!�eiĜ�ây

0 �N j0�
and Ĵ � eiw

p
n0�nV eiĜâ0e2iĜ . Here, n0 � �N̂ 2R

d3r ĉ 0yĉ 0��V , Ĝ � �2i�2nV �ây
0 â

y
0

P
qfi0 yqâqâ2q 1

H.c., w is an arbitrary phase, and yq is given in Ref. [9].
By using these expressions, we can show that [10]

�Ĵ, Ĵy	, �Ĵ, ĉ 0	, �Ĵ, ĉ 0y	 � O �1�V � . (6)

Lifshitz and Pitaevskii (LP) [8] claimed that Eq. (6) is
applicable even when the interaction is stronger. Their
discussion is somewhat controversial because LP started
from, instead of Eq. (3), the assumption that Ĵ could be
defined by ĴjN , n� � JjN 2 1, n�, where jN , n� denotes
any eigenstate that has exactly N bosons. However, we
note that for weakly interacting bosons we have not used
this assumption in the derivation of Eq. (6). We thus ex-
pect that Eq. (6) also holds for bosons with stronger in-
teraction, even if LP’s assumption is too strong. If this is
the case, the following results are applicable not only to
weakly interacting bosons but also to bosons with stronger
interaction, because the results will be derived only from
Eqs. (1)–(6).

Since we are studying the robustness against weak per-
turbations, we assume that l is small, so that J is very
small. In this case, we have to consider transitions only
among jN , G�’s with different N’s (i.e., we can neglect
transitions to excited states). Hence, the reduced density
operator r̂ can be generally written as

r̂�t� �
X
N ,M

rNM�t�jN , G� �M, Gj . (7)

It seems almost obvious that quantum coherence between
jN , G� and jM, G� with large jN 2 Mj would be destroyed
by the interaction with the environment. We therefore
study the most interesting case, where rNM is localized
in the N-M plane in such a way that

p
�dN2� ø �N�. If

this relation is satisfied at t � 0, it is also satisfied for
all t ø teq. We also assume that V is large enough, so
that the boson density in the environment ���� ��N�0�� 2

�N�t��	�V ��� is negligibly small for all t ø teq. Under
these conditions, we can calculate the time evolution of
rNM�t�, using Eqs. (1)–(6), as [10,13]
rNM�t 1 Dt� � e2i�N2M�m���n�t����Dt� h̄

3 
rNM�t� �1 2 �N 1 M�j���n�t����Dt�2	 1 rN11,M11�t�
q

�N 1 1� �M 1 1� j���n�t����Dt� 1 O �l4� , (8)
for a finite time interval Dt that satisfies h̄�Ec & Dt ,

1��N�j�n�, where Ec is the energy scale over which the
matrix elements of ĤSE are non-negligible. Here, n �
�N��V , and m�n� (.0 for a condensate of interacting
bosons [3,8,9]) denotes the chemical potential of bosons
in the box. Furthermore,

j�n� � K
2p

h̄
n0

n
jlj2

y2

V
D���m�n���� , (9)

where D�m� is the density of states per unit volume of the
environment at energy m, y is the total volume of the walls
of the box, and K is a constant of order unity. Both m and
j depend on �N� through n, but this dependence is very
weak because a change of �N� by 1 only causes the change
of n by 1�V . Note that our basic equation (8) has only
two parameters, m and j. Namely, all model-dependent
parameters (details of Ĥ, ĤE, and ĤSE) are absorbed in
these two parameters. Therefore, the following results are
general and model independent.
Using Eq. (8), we first calculate the time evolutions of
the expectation value �N� and the fluctuation �dN2� of the
number N of bosons in the box. We find

d
dt

�N� � 2j�n� �N� . (10)

Hence, �N� decreases gradually because of the leakage flux
J � j�n� �N�. For �dN2�, on the other hand, we find

d
dt

F � j�n� �1 2 F	 , (11)

where F � �dN2���N� is the “Fano factor” [1]. It is
seen that a robust state must have F � 1, whereas any
states with F fi 1 are fragile in the sense that their F
evolves with time, approaching unity. For example, the
ground-state wave function in the Bogoliubov approxima-
tion, jBog, G�, has F . 1 [9]. Hence, it is fragile. The
ground-state wave function with a fixed number of bosons,
jN , G�, is also fragile because F � 0.

Since the evaluation of F is easy, F is a convenient tool
for the investigation of the robustness. However, since
689
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F is only related to the diagonal elements of r̂, it does
not distinguish between pure and mixed states. Therefore,
we now solve the basic equation (8) for various initial
states to investigate the robustness of the wave functions
in more detail. When the initial state is a pure state of the
NSIB, i.e., r̂�0� � jN , G� �N , Gj, then rNM after a short
interval Dt is evaluated as rNN �Dt� � �1 2 Nj���n�t����Dt	,
rN21,N21�Dt� � Nj���n�t����Dt, and other elements are zero.
Therefore, r̂ becomes a classical mixture of jN , G� and
jN 2 1, G� at t � Dt, consistent with the above result that
shows that states with F � 0 are fragile. By evaluating the
evolution at later times, we find that r̂ evolves toward a
Poissonian mixture of jN , G�’s [13], consistent with F !
1. In a similar manner, we can show that the pure state
of Bogoliubov’s ground state r̂�0� � jBog, G� �Bog, Gj,
which has F . 1, also evolves into a mixed state. We
can also show that the number-phase squeezed state of
interacting bosons (NPIB), which was found in Ref. [9]
as a number-phase minimum uncertainty state with 0 ,

F , 1, also evolves into a mixed state. These examples
show that F is indeed a simple measure of the robustness:
A pure state with F fi 1 is unlikely to remain pure. Note,
however, that a pure state with F � 1 is not necessarily
robust. For example, we can show that the coherent state
of free bosons (CSFB) evolves into a mixed state, although
it has F � 1. Hence, F � 1 is only a necessary condition
for the robustness.

Among many states with F � 1, we have successfully
found a very special state that is robust in the sense that it
remains pure when it is weakly perturbed by the environ-
ment. The state is given by

r̂�t� � ja�t�, G� �a�t�, Gj . (12)

Here, a�t� is a time-dependent complex number given by

a�t� � eiw�t�
q

�N�t�� , (13)

where �N�t�� is the solution of Eq. (10), and

w�t� � w�0� 2
i
h̄

Z t

0
m���n�t���� dt . (14)

Here, the initial phase w�0� is arbitrary, and
n�t� � �N�t���V . Furthermore,

ja, G� � e2jaj2�2
X̀

M�0

aM
p

M!
jM, G� , (15)

which we call the coherent state of interacting bosons
(CSIB). It has the same form as the CSFB, except
that jM, G� is the NSIB. Because of this difference,
simple relations for the CSFB do not hold for the
CSIB. For example, �a, Gjĉja, G� fi a�

p
V , and,

moreover, ja, G� is not an eigenstate of ĉ . Neverthe-
less, �a, GjN̂ ja, G� � �a, GjdN̂2ja, G� � jaj2, hence
F � 1 exactly, as in the case of CSFB. Since the NSIB
has a complicated wave function, so does the CSIB. (For
weakly interacting bosons, its explicit form was given in
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Ref. [9].) Although complicated, the wave function of the
CSIB is robust against weak perturbations from the envi-
ronment: It keeps the same form, whose parameter a�t�
evolves slowly (except for the phase rotation), and remains
a pure state, in contrast to other wave functions which
soon evolve into mixed states. In fact, Eqs. (12)–(15)
yield

rNM�t� � e2�N�t�� ei�N2M�w
p

N!M!
�N�t���N1M�2�, (16)

rNM�t 1 Dt� � e2�N�t���12jDt� ei�N2M��w2mDt� h̄�
p

N! M!

3 �N�t���N1M�2��1 2 jDt��N1M�2�,

(17)

which indeed satisfy Eq. (8).
We now discuss the compatibility with the SSR, which

might raise the objection that the CSIB would not be real-
ized because superpositions between states with different
values of N are forbidden for massive bosons. To show that
this intuitive objection is wrong, it is sufficient to give one
counterexample. Suppose that there is another box, which
also contains condensed bosons, in the same room. The to-
tal system consists of two boxes and the environment. Ac-
cording to the SSR, the wave function of the total system
jF�total should be a superposition of states that have the
same number of bosons, Ntotal � N 1 N 0 1 NE � fixed,
where N 0 denotes the number of bosons in the second box.
Consider the following state, which satisfies this constric-
tion:

jF�total �
X

N ,N 0,�

e2jaj2�22ja0j2�2aNa0N 0

C��
p

N! N 0!

3 jN , G� ≠ jN 0, G�0 ≠ jNtotal 2 N 2 N 0, ��E .

(18)

Here, a � jajeiw , a0 � ja0jeiw0

, and C� is a complex
number, where � is a quantum number labeling states of
the environment jM, ��E which has M bosons. Regarding
the phases w and w0, only the relative value w 2 w0 � u

has a physical meaning. We thus take w0 � 0 henceforth.
Equation (18) yields the reduced density operator of the
first box as r̂ �

P
N e2jaj2�jaj2N�N!� jN , G� �N , Gj. It is

easy to show that this is identical to

r̂ �
Z p

2p

du

2p
jjajeiu , G� �jajeiu , Gj . (19)

Although this r̂ represents a mixed state of CSIB’s,
we note that it does not contain the maximum informa-
tion on the state in the box, whereas the best density
operator should have the maximum information. The
lacking information is that the phase relative to the
condensate in the second box is w. Hence, the maximum
information is Eq. (19) with the restriction u � w.
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This combined information is concisely expressed as
r̂ � jjajeiw , G� �jajeiw , Gj, which agrees with Eq. (12).
Namely, Eq. (12) is better than Eq. (19) because it con-
tains more information. This example demonstrates that
Eq. (12) can be compatible with the SSR in realistic cases
where the box exchanges bosons with the environment.
Only in the limiting case where the box is completely
closed should the SSR be crucial, and the NSIB would be
realized if the temperature T ! 0 [14].

We have established that the CSIB is a robust pure state
of interacting many bosons. We finally discuss its impli-
cations. The robustness of the present work should not
be confused with the “stiffness of macroscopic wave func-
tions” [3,4], which refers only to the stability of an order
parameter in a mean field approximation. For example,
jBog, G� has the stiffness [3,4], whereas it is fragile as we
have shown. The robustness is a generalization of the ro-
bustness of coherent states of f � 1 systems [1,2]. It is
thus natural to expect that, for f ¿ 1 systems, some co-
herent state would be robust. However, it was not known
which coherent state is robust: there are many choices of
the coordinate by which a coherent state is defined. Since
Eq. (3) yields

�Ĵ�j� ja, G� � aja, G� , (20)

this work has revealed that the robust coherent state is the
one defined by Ĵ�j. In this sense, Ĵ 1 Ĵy is the “natural
coordinate” of interacting many bosons. The condensation
of bosons are often characterized by the off-diagonal long-
range order (ODLRO) that is defined by �ĉy�r�ĉ�r0�� �
finite for jr 2 r0j � V 1�3. By using Eqs. (2)–(5) we can
show that the CSIB, NSIB, NPIB, and the Bogoliubov’s
ground state all have the ODLRO. Hence, the present work
has revealed that the ODLRO does not necessarily imply
the robustness. Furthermore, all of these states have the
same energy, i.e., the differences of �Ĥ� are only O �1�V �
for the same value of �N� [15]. For example, if we let EN ,G

be the eigenenergy of the NSIB, ĤjN , G� � EN ,GjN , G�,
we can then easily show from Eq. (15), that, by neglect-
ing terms of O �1�V �, �a, GjĤja, G� � Ejaj2,G � E�N�,G .
Therefore, the robustness of the CSIB is not due to an en-
ergy difference, but to natures of wave functions. Since
interactions with the environment are finite in most physi-
cal systems, we argue that only the robust state, CSIB,
should be realized as a macroscopic pure state. Since
the (relative) phase of the CSIB is almost definite [9],
the global gauge symmetry is then broken. Although V
is finite, we are thus led to the symmetry breaking by
considering the robustness. This suggests that quantum
phase transitions may have more profound origins than sin-
gularities that are developed as V ! `. A conventional
trick to get symmetry breaking states for boson conden-
sates is to introduce a symmetry breaking field h, which
couples to ĉ as Ĥh �

R
d3r �h�ĉ 1 hĉy�. However, h

is usually considered as an unphysical field [3,16,17], and
it was sometimes argued that symmetry breaking states
were meaningless because they look against the SSR [17].
In contrast, this paper gives a physical reasoning for the
symmetry breaking, assuming only physical interactions,
and shows the compatibility with the SSR.
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