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Invariant Integral and the Transition to Steady States in Separable Dynamical Systems
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We show that the transition between fixed points in a separable dynamical system is fully described
by an invariant integral. We discuss in detail the case of a system with two temporal variables with
bilinear coupling, where the new stable state is attained asymptotically through spiraling into the fixed
point. Through the invariance, it is possible to establish conditions for the control parameter that permit
a (targeted) transition in finite time and without relaxation oscillations.

PACS numbers: 05.45.–a, 42.55.– f, 42.60.Mi
Many aspects of the temporal evolution of dynamical
systems have been studied in the past years and numerous
techniques have been devised to stabilize unstable states
(e.g., periodic orbits) embedded in a chaotic regime [1].
Such schemes are typically based on the knowledge of the
local structure of the phase space and on the measurement
of the instantaneous state of the system. Corrections to the
control parameter(s) are issued on the basis of the deviation
between the desired evolution and the actual one.

We present a global steering technique (global target-
ing) which permits the modification (and optimization)
of the transition between two states and is based solely
on the knowledge of the system’s flow. Our scheme ex-
ploits the global flow and the associated changes coming
from macroscopic variations in a control parameter. We
therefore steer the system in phase space through an “arti-
ficial trajectory” which is the result of the transit through
an infinite number of the system’s own manifolds. The
transit is driven by the variations—transverse to the mani-
folds—that we impose to the control parameter. In this
way, no measurement of the instantaneous state of the sys-
tem is necessary and no feedback need be applied. Further-
more, the scheme applies to all dynamical systems whose
dynamics are separable in one variable and which have
one stable fixed point.

For the sake of concreteness and without loss of gener-
ality, we discuss the principle of the invariant integral and
present an example of the application of this technique to
a specific type of nonlinear system which satisfies the pre-
vious requirements, consists of two dynamical variables,
and possesses a bilinear nonlinearity. Numerous systems
are well described by this type of model (e.g., population
problems [2,3] and lasers [4]).

We consider the simple, separable dynamical system:

�x � 2x 1 xy , (1a)

�y � 2e� y 1 xy 2 P� , (1b)

where the dot represents the (rescaled) time derivative, x
and y are the variables, e �ø1� is the relaxation constant
of y (relative to that of x to which time is rescaled), and
P is the control parameter for the system. This model pro-
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vides a good qualitative description of so-called class B
lasers (solid-state, CO2, semiconductors) [4] but could also
describe population dynamics [2,3]. At variance with the
classic Lotka-Volterra model [2,3], the population system
that we consider here does not have an infinite amount of
food supply for the prey � y�, but rather a limited one, con-
trolled from the “outside” through the parameter P. We
also introduce a natural death rate for the prey, 2ey, and
the bilinear term represents the disappearence of prey due
to predators �x� in Eq. (1b) [the same term is the source for
predators, cf. Eq. (1a)]. Finally, as in [2,3], a death rate for
the predator is introduced [2x in Eq. (1a)]. We can there-
fore think of this system as a “cage” in which the prey is
fed from the outside at a given rate and where the number
of predators is related to the prey availability. The modifi-
cations that we introduce in this model with respect to the
classic Lotka-Volterra model [2,3] drastically change the
phase space structure, and interesting new features appear
(cf. the discussion below and compare, e.g., to the analy-
sis in [2,3]). For the laser, x and y represent the elec-
tromagnetic field intensity and the population inversion,
respectively, and P represents the pump parameter. A
more detailed interpretation of the model for this problem
can be found in [5,6]. Throughout the paper we will con-
sider e . 0 and P . 0 for obvious physical reasons, al-
though the mathematical discussion is valid outside these
bounds.

The properties of the steady states, their stability, and
local phase space structure are trivially obtained from
Eqs. (1a) and (1b) and are summarized in Fig. 1. In the
whole parameter space there exists always one, and only
one, stable fixed point with an exchange of stability when
the control parameter passes through its “critical” 1 value.
We are interested in the transition from A to B (Fig. 1)
which brings the system from the trivial state (laser field
intensity or predator population equal to zero) to the
nontrivial state (laser field intensity or predator population
different from zero); i.e., we are interested in describing
the growth of the variable that “feeds off” the other one.
The phenomenon we analyze is fully deterministic and
therefore our treatment does not require the inclusion of
fluctuations.
© 2000 The American Physical Society
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FIG. 1. Fixed points and their stability in parameter space for
Eqs. (1a) and (1b). Point A is stable for P # 1, point B above
P � 1. We remark that when stable B is a focus on most of
the parameter interval, since e ø 1. Thus, the center appears
either in a negligibly small interval 1 # P # 1 1 e

4 or for P
values that are unrealistically high �P . 4

e �.

Formal integration of Eq. (1a) provides the condition
log�x�t0�� 2 log�x�t0�� �

Rt0

t0
� y�t� 2 1� dt. Since, as

shown in the previous discussion, x�t0� and y�t0� always
converge towards the fixed point B (for P . 1), then

lim
t0!`

log

µ
x�t0�
x0

∂
� lim

t0!`

Z t0

0
� y�t� 2 1� dt , (2)

where x�t0 ! `� and x0 are the asymptotic and initial val-
ues of x [7], respectively, and t represents the integration
time (over the semi-infinite interval, starting from the ini-
tial time chosen to be t0 � 0). This condition relates the
asymptotic value of x to its initial value through the integral
of the deviation of y from its asymptotic value � yss,B � 1�
and we can interpret it as the “energy” that has to be pro-
vided to bring the system onto B. We remark that the ex-
istence and invariance of the integral [right-hand side (rhs)
of Eq. (2)] are both nontrival and widely applicable [8].

Since e ø 1, B is a focus over most of its stable P in-
terval (Fig. 1) [9]. Hence, the approach to equilibrium will
be achieved with oscillations [6], i.e., x and y exchange en-
ergy until they both reach asymptotically their respective
values x�t0 ! `� � xss,B, y�t0 ! `� � yss,B. Only then
is the new equilibrium state attained.

Figure 2 shows the evolution of the trajectory (solid
line) from the initial point (A turned unstable) towards the
final state (B) plotted over the phase space flow (vectors).
The trajectory first evolves near the y axis, and only after
passing y � 1 is it then shot up by the flow towards large
values of x. Because of the focuslike structure of B, the
trajectory is forced to roll itself around the fixed point.

The winding of the trajectory around B illustrates the
fact that during the temporal evolution the system “ex-
changes” deficits and overabundance in either variable
(Fig. 3a) until, gradually, the oscillating integral converges
to the result of Eq. (2). Figure 3b shows the value taken by
the rhs of Eq. (2) as a function of time for different values
of y0. In spite of the fact that the integral itself changes
in time, all asymptotic values are equal. This numerically
confirms the fact that the steady state is attained only by
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FIG. 2. Trajectory demonstrating the evolution from an intially
prepared state (near A, unstable) into B. The flow is plotted in
the background (vectors). The repeated winding of the trajectory
follows the flow and forces the system through a long evolution
to reach B. The transition results from suddenly setting the
control parameter to the value for which B is stable at time t �
0. Parameter values (here and in the following figures, unless
otherwise indicated): e � 0.0025, x0 � 1 3 10215, y0 � 0.9,
and P` � 1.1.

waiting an infinite amount of time and that the integral,
Eq. (2), is an invariant.

The question arises whether it is possible to obtain a
direct transition from A to B and in finite time. Figure 2
shows that this is impossible under stepwise switching,
since the trajectory cannot cross itself to enter B directly.
However, there is a way of achieving the desired goal.
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FIG. 3. (a) Temporal evolution of x (solid line) and y (dashed
line) as a function of time for the same parameters as in Fig. 2.
(b) Temporal evolution of the integral, Eq. (2), as a function
of time for the same conditions as in Fig. 2 (solid line); for
y0 � 0.95 (long-dashed line); for y0 � 0.99 (short-dashed line).
Notice that the integrals converge at different times all to the
same value. The integrals converge to 1.612 � 1

20 log� xss,B
x0

�,
since time is in ms and the x rescaling constant we use is
2 3 107 s21.
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The asymptotic result, Eq. (2), shows that the new equi-
librium position (B) will be attained when its left-hand
side (lhs) and rhs are equal simultaneously. This condi-
tion is certainly satisfied asymptotically, but if we find a
way of satisfying it at a finite time t, then the long oscil-
lations seen in Fig. 3 will disappear. This is possible if at
the first instant t � t at which x�t� � xss,B the integral is
satisfied [10]:

log

µ
x�ss,B�

x0

∂
�

Z t

0
� y�t� 2 1� dt , (3)

and, in addition, y�t� � 1 [equivalent to imposing that the
time derivative of the rhs of Eq. (3) be zero at t � t].
Such requirements can be translated into conditions to be
imposed onto the control parameter P.

In other words, in order to attain this goal the system
must acquire some additional degree of freedom which
permits the appropriate modification of the integrand. The
geometry of the phase space suggests that this may be pos-
sible by allowing the trajectory to exit the x-y plane. In-
deed, while the trajectory must spiral into the fixed point,
it can go straight into many other points of phase space
(e.g., the point with coordinates y � 1 and maximum x
on the trajectory in Fig. 2). If, at the correct time t [the
one for which x�t� � xss,B], P is suddenly changed, then
we may bring the representative point onto the final value
and avoid the spiraling. This explains the technique used
in [11]. However, use of the invariant integral allows us
to obtain much better results than those of [11]. Indeed,
we can use Eq. (3) as a criterion for steering the trajectory
around in phase space and tailor the evolution to our de-
sires. In the general form, the integral [Eq. (3)] is implicit
and can best be embedded into a numerical optimization
technique (since the system is nonlinear). Nevertheless, it
is possible to obtain an analytical approximation that pro-
vides satisfactory estimates for the constraints and that can
be used as initial values for further refinements of an itera-
tive search. We illustrate this with the following example.

Consider the system, Eqs. (1a) and (1b), prepared in the
state A [x�0� � x0, y�0� � y0] subject to a variation of the
control parameter such that the asymptotic fixed point be
64
B (xss,B � P` 2 1, yss,B � 1), with the following func-
tional form for the control parameter:

P�t� � Pbu�2t� 1 �a0 1 a1t 1 a2t2�u�t�u�tf 2 t�
1 P`u�t 2 tf� , (4)

where Pb is the control parameter value for the initial
condition, tf , which now takes the role of t, is the time at
which x and y must reach simultaneously their asymptotic
value, u is the Heaviside function, and a0, a1, and a2 are
coefficients (to be determined) which provide a quadratic
form for the control parameter. In order to proceed to an
estimate of the aj’s we make the following assumptions,
very well verified in practice (for all those systems with
e ø 1): x takes negligibly small values over most of
the time interval; x grows very rapidly towards its final
value; we can calculate the evolution of y in the linear
approximation. The error that we make by adopting this
approximation for an estimate of y�t� is small since x takes
non-negligible values only over a very short time (typically
less than 1% of the evolution) [11], and we aim for a direct
transition towards B without overshoot and spiraling (i.e.,
x does not become so large that the approximation may be
broken even in a very short time).

Under these approximations Eq. (1b) reduces to

�y � 2e� y 2 P� , (5)

which can be integrated to provide

y�t� �

∑
y0 2 a0 1

a1

e
2 2

a2

e2

∏
e2et

1 a0 1 a1

µ
t 2

1
e

∂
1 a2

µ
t2 2 2

t
e

1
2
e2

∂
,

(6)

where we have made use of the initial condition y�t �
0� � y0. Using Eq. (6) we can explicitly calculate the rhs
of Eq. (3) and use the equality with the lhs to determine
the coefficients of P�t� [Eq. (4)] which satisfy the integral
[Eq. (3)] at the shortest possible time tf .

From conditions P�t � 01� � P0 and P�tf� � Pf

(both arbitrarily fixed) we obtain immediately a0 � P0,
a1 � �P` 2 y0 1 a2t2

f��tf , and
a2 �
log� xss,B

x0
� 2 �P0 2 1�tf 1 �P0 2 Pf � � tf

2 2
1
e � 1

1
e �P0 2 y0 1

P02Pf

etf
� �1 2 e2et�

� tf

e2 2
2
e3 � �1 2 e2et� 2

1
6 t3

f 2
t2
f

e 1
2
e2 tf

. (7)
If we fix P0 � 1.48, Pf � 0.85, tf � 1.85 3 1024 s,
P` � 1.1 and y0 � 0.9�� Pb�, we obtain the following
coefficients: a0 � 1.48, a1 � 25004.58, and a2 �
8.64421 3 106. By using these values as initial estimates,
we optimize numerically and find the excellent result
shown in Fig. 4. We remark that the amplitude of the resid-
ual oscillation (not visible in the figure) is approximately
1024 3 xss,B and that it represents an improvement of
about 6 orders of magnitude compared to the unsteered
transition (cf. Fig. 3; notice also the considerable reduc-
tion in the transition time). The error with which we have
analytically estimated a1 and a2 is 4% and 6%, respec-
tively, compared to the optimal values of Fig. 4. We also
remark that this model is particularly stiff and that real
systems display a much smaller number of relaxation
oscillations (cf., e.g., [6]). Hence, the degree of precision
with which the coefficients of the control parameter
have to be known is correspondingly reduced, thereby
increasing the applicability of the technique.
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FIG. 4. Optimized steering of the transition. Integral (solid
line) and x (dashed line) as a function of time for a0 � 1.5,
a1 � 25228.59, and a2 � 9.21135 3 106. Notice that these
optimized values require a slightly different value of tf �
1.85175 3 1024 s. At t � tf the two sides of Eq. (3) are
equal, thus no oscillations ensue. The inset shows, in the 3D
space, the direct evolution into the fixed point. Cf. Fig. 3 also
comparing the horizontal and vertical scales.

Finally, we stress the fact that for the sake of an easy
demonstration we have chosen a simple function for P�t�,
but the choice is far from being unique. Indeed, the shape
of P�t�, chosen compatibly with Eq. (3), can contain
a priori a number of parameters as large as one wishes.
To determine them, it will suffice to find additional con-
straints (e.g., specific points through which the trajectory
has to pass during the transition) to be imposed onto the
system. We remark the great potential for applications of
this technique, e.g., in the realm of telecommunications,
where notable improvements in the quality of the response
of very low-cost semiconductor lasers may allow their
use as transmitters in low-cost devices (e.g., telephones,
modems, etc.).

In summary, we have shown that the transition between
states of a 2D separable nonlinear system is fully described
by an invariant characteristic integral. The time evolu-
tion of this integral, which depends on the control parame-
ter, determines the way the transition occurs. Information
obtained from this quantity can be used to determine a
functional dependence of the control parameter on time to
achieve a desired form for the transition.
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