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Phase Ordering and Roughening on Growing Films
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We study the interplay between surface roughening and phase separation during the growth of binary
films. Already in 1 1 1 dimensions, we find a variety of different scaling behaviors, depending on how
the two phenomena are coupled. In the most interesting case, related to the advection of a passive scalar
in a velocity field, nontrivial scaling exponents are obtained in simulations.
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Thin solid films are grown for a variety of technologi-
cal applications, using molecular beam epitaxy (MBE) or
vapor deposition. In order to create materials with specific
electronic, optical, or mechanical properties, often more
than one type of particle is deposited. When the particle
mobility in the bulk is small, surface configurations be-
come frozen in the bulk, leading to anisotropic structures
that reflect the growth history, and are different from bulk
equilibrium phases [1]. Characterizing structures gener-
ated during composite film growth is not only of techno-
logical importance, but represents also an interesting and
challenging problem in statistical physics.

In this paper, we examine the growth of binary films
through vapor deposition, and study some of the rich phe-
nomena resulting from the interplay of phase separation
and surface roughening. Some previous theoretical stud-
ies have focused on the stability of the growing film against
decomposition and roughening [2,3]; or on crossover phe-
nomena and scaling in a particular computer model [4].
Here, we undertake a first systematic study of the poten-
tial couplings between the roughening and ordering of a
growing surface. By combining analytical and numerical
results, we find a wealth of possible scenarios of critical
phenomena in this coupled system, and also unveil unex-
pected connections to other nonlinear problems of interest,
such as the advection of a passive scalar in a turbulent fluid.

Simple models for layer by layer growth assume either
that the probability that an incoming atom sticks to a given
surface site depends on the state of the neighboring sites in
the layer below [5], or that the top layer is fully thermally
equilibrated [6]. Assuming that the bulk mobility is zero,
once a site is occupied, its state does not change anymore.
If the growth rules are invariant under the exchange of the
two particle types, the phase separation is in the univer-
sality class of an equilibrium Ising model. Correlations
perpendicular to the growth direction are characterized by
the critical exponent n of the Ising model, and those par-
allel to the growth direction by the exponent nzm, with zm

being the dynamical critical exponent of the Ising model.
However, the layer by layer growth mode underlying

these simple models is unstable, and the growing surface
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becomes rough. In many cases the fluctuations in the
height h�x, t�, at position x and time t, are self-affine, with
correlations

��h�x, t� 2 h�x0, t0��2� � jx 2 x0j2x

3 g�jt 2 t0j�jx 2 x0jzh � , (1)

where x is the roughness exponent, and zh is a dynami-
cal scaling exponent. While such scaling has been ob-
served in many models of deposition of a single species
(homoepitaxy), there are fewer conclusive studies in the
case of binary growth and heteroepitaxy. One example is a
computer model introduced in Ref. [4] with local sticking
probabilities for two particle species in 1 1 1 dimensions.
The simulations show phase separation into domains (with
large sizes consistent with the Ising model), and a very
rough surface profile with sharp minima at the domain
boundaries. Phase separation in binary growth provides
the simplest example of a (nonequilibrium) phase transi-
tion in a growing (and rough) film. In this context, we may
ask the following questions: (i) Are the surface roughness
exponents different in the vicinity of the phase transition
point? (ii) Are the critical exponents of the phase transi-
tion modified on a rough surface? We shall demonstrate
that the coupling of roughening and phase separation leads
to a rich phase diagram, and to nontrivial critical exponents
already in 1 1 1 dimensions.

To characterize phase separation, we introduce an order
parameter m�x, t�, which is the difference in the densities
of the two particle types at the surface at position x and
time t. The interplay between the fluctuations in m and the
height h is captured phenomenologically by the coupled
Langevin equations,

≠th � n=2h 1
l

2
�=h�2 1

a

2
m2 1 zh , (2)

≠tm � K�=2m 1 rm 2 um3� 1 a=h ? =m

1 bm=2h 1
c
2

m�=h�2 1 zm . (3)

Here, we have included the lowest order (potentially
relevant) terms allowed by the symmetry m ! 2m.
© 2000 The American Physical Society
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Equation (2) is the Kardar-Parisi-Zhang (KPZ) equation
[7] for surface growth, plus a coupling to the order
parameter. Equation (3) is the time dependent Landau-
Ginzburg equation for a (nonconserved) Ising model, with
three different couplings to the height fluctuations. The
Gaussian, delta-correlated noise terms, zh and zm, mimic
the effects of faster degrees of freedom. A different set
of equations was proposed by Léonard and Desai [2] for
phase separation during MBE. Their equations reflect
the MBE conditions of random particle deposition (in
contrast to sticking probabilities that depend on the local
environment) and a conserved order parameter which
evolves by surface diffusion. They do not include the
KPZ nonlinearity. Computer simulations of corresponding
1 1 1 dimensional systems are presented in [2,3].

Dimensional analysis indicates that the couplings ap-
pearing in Eqs. (2) and (3) are relevant, and may lead to
new universality classes. We shall leave the renormaliza-
tion group analysis of these equations to a more technical
paper, and focus here instead on computer simulations in
1 1 1 dimensions. The quantities evaluated in the com-
puter simulations are the height correlation function in
Eq. (1) and the order parameter correlation functions per-
pendicular and parallel to the growth direction. Allowing
for the possibility of different dynamic exponents, zm and
zh, for the order parameter and the height variables, we fit
to the scaling forms:

G�x�
m �x 2 x0� 	 �m�x, t�m�x0, t��

� jx 2 x0jh21g�
m �jx 2 x0j�j� ,

G�t�
m �t 2 t0� 	 �m�x, t�m�x, t0��

(4)

� jt 2 t0j�h21��zm gk
m�jt 2 t0j�jzm � .

Rather than discretizing Eqs. (2) and (3) and integrating
them numerically, we decided to perform a computer simu-
lation using a “brick wall” restricted solid-on-solid model
(see Fig. 1). As this model has the same symmetries and
conservation laws as the Langevin equations, it is expected
to be in the same universality class. Starting from a flat
surface, particles are added such that no overhangs are
formed, and with the center of each particle atop the edge
of two particles in the layer below. We use two types of
particles, A and B (black and grey in the figures). The
probability for adding a particle to a given surface site, and
the rule for choosing its color, depends on the local neigh-
borhood. When A particles are more likely to be added to
A dominated regions, and vice versa, the particles tend to
phase separate and form domains. In this case, the order
parameter correlation length j is of the order of the
average domain width. By changing the growth rules, it
is possible to study cases in which some (or all) of the

FIG. 1. The “brick wall” model used in the simulations.
couplings a, b, c, and a vanish, and thus to gain a
complete picture of the different ways in which the height
and the order parameter influence each other.

The decoupled case, a � a � b � c � 0, is imple-
mented using the following updating rules: A surface site
is chosen at random, and a particle is added if it does not
generate overhangs. Its color is then chosen depending
on the colors of its two neighbors in the layer below. If
both neighbors have the same color, the newly added par-
ticle takes this color with probability 1 2 p, and the other
color with probability p (where p is much smaller than 1).
If the two neighbors have different colors, the new particle
takes either color with probability 1�2. Neighbors within
the same layer are not considered.

Since the probability of adding a particle to a given sur-
face site does not depend on its color, the surface grows
exactly as with only one particle type, and is character-
ized by the KPZ exponents x � 1�2 and zh � 3�2. Simi-
larly, the choice of particle color at a given site is not
affected by the height profile. The height profile deter-
mines only the moment at which a site is added, since the
no-overhang condition requires both neighbors in the pre-
vious layer to be occupied. If we equate layer number with
time, domain walls move to the right or left with proba-
bility 1�2 during one time unit, and a pair of new domain
walls is created with probability p. This is identical to
the Glauber model for a one-dimensional Ising chain with
coupling J and at temperature T , with p � exp�24J�kT �.
The correlation length j perpendicular to the growth di-
rection is, consequently, j � exp�2J�kT � � 1�pp, and
the correlation time is t � exp�4J�kT � � 1�p. The dy-
namical critical exponent for the order parameter is thus
zm � 2. Note that the “time” used for the order parameter
(namely, layer number) is different from real time, which
is for each particle the moment when it is added to the
growing surface. However, this difference becomes neg-
ligible for sufficiently small p since the thickness of the
surface over the correlation length,

p
j, is much smaller

than the characteristic time, j2, for order parameter fluc-
tuations. Simulations indeed confirm that the order pa-
rameter and height evolve completely independently. A
typical profile is shown in Fig. 2a; the corresponding scal-
ing analysis conforms to expectations, and is not pre-
sented here.

The situation a . 0 with a � b � c � 0 can be im-
plemented by updating sites on top of particles of differ-
ent colors less often by a factor r , 1 compared to sites
above particles of the same color, a situation that is simi-
lar to the one studied in [4]. As the order parameter is
not affected by the height variable, its dynamics is still
the same as that of an Ising model, with zm � 2. Be-
cause growth is slower at domain boundaries than within
domains, the domain boundaries sit preferentially at the
local minima of the height profile, with a mound over
each domain (see Fig. 2b). This means that the surface
roughness exponent is x � 1 on length scales up to j.
Changes in the height profile on this scale result from
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FIG. 2. Snapshot of the last 400 layers of simulations, for
L � 200 sites. (a) The decoupled case with p � 1�90, and
r � 1. (b) For p � 1�200, and r � 1�20, the height is coupled
to the domains, but not vice versa. (c) The fully coupled case,
using the same parameters as (b), but with updating rules that
include neighbors in the same layer. (d) With r � 1, and the
updating rules of (c), the domains are influenced by the height,
but not vice versa. (Note that the profiles in (a) and (d) are
identical since we used the same random numbers.)

domain wall diffusion, and the dynamic exponent is there-
fore zh � 2. On length scales much larger than j, the aver-
age order parameter is zero, implying that KPZ exponents
of x � 1�2 and zh � 3�2 are regained. The crossover in
the roughness is described by a scaling form:

��h�x, t� 2 h�x0, t��2� � jx 2 x0j2g�jx 2 x0j�j� ,

with a constant g�y� for y ø 1, and g�y� � 1�y for
y ¿ 1.

To mimic the influence of surface roughness on the order
parameter [nonzero a, b, or c in Eq. (3)], the color of a
newly added particle is made dependent not only on those
of its two neighbors in the layer below, but also on the
colors of its two nearest neighbors on the same layer, if
these sites are already occupied. With probability 1 2 p,
the newly added particle takes the color of the majority of
its 2, 3, or 4 neighbors, and with probability p it assumes
the opposite color. If there is a tie, the color is chosen at
random with equal probability. The height variable now
affects the order parameter in two ways:

(i) Domain walls are driven downhill.—The reason is
that the neighbor on the hillside of a site being updated
is more likely to be occupied than the one on the valley
side. The newly added particle is thus more likely to have
616
the color on the hillside. [This corresponds to a . 0 in
Eq. (3).]

(ii) New domains are predominantly formed on hill-
tops.—This is because domains on hilltops can expand
more easily than those on slopes or in valleys, indicating
b . 0 in Eq. (3). Another consequence is that for the same
p, the correlation length j is much larger than in the de-
coupled case, as is apparent in Figs. 2c and 2d.

For the fully coupled case depicted in Fig. 2c, we find
essentially the same scaling behavior as in Fig. 2b, i.e.,
a height profile slaved to the Glauber dynamics of the
domains. The most interesting case, shown in Fig. 2d,
is when the height profile is independent of the domains
(a � 0), evolving with KPZ dynamics, while the order
parameter is influenced by the roughness. The dynamic ex-
ponent zm for the order parameter was first obtained by col-
lapsing the correlation functions using Eqs. (4), as shown
in Fig. 3. These curves imply that h � 1, j ~ p20.542,
and t ~ jzm ~ 1�p, giving zm 
 1�0.542 
 1.85.

The same nontrivial value for zm is obtained by a
completely independent measurement of the dynamics of
domain coarsening following a quench from a “high tem-
perature” (p close to 0.5) to zero temperature �p � 0�.
Figure 4 shows the domain density as a function of time
for a system of size L � 16 384. The resulting zm 
 1.85
is in agreement with the value from the scaling collapse.

The following simple argument fails to provide the expo-
nent zm 
 1.85. Consider a Langevin equation, �x � h�t�,
for the position x of a single domain wall at time t. Since
the motion of the domain wall is strongly influenced by
the height profile, the noise h�t� must have long-range
correlations �h�t�h�t0�� � Djt 2 t0ja , reflecting the

-1

10
-3

10
-2

10

10

10-2

10
-1

10

0 1 2 3 4

0

p=1/160
p=1/320
p=1/640
p=1/1280
p=1/2560

0 1 2 3 4

0

p=1/160
p=1/320
p=1/640
p=1/1280
p=1/2560

FIG. 3. Scaling collapse of correlations G�x�
m and G�t�

m in
Fig. 2d. For each p, the data is an average over 7500 widely
separated layers, and for systems of size up to 8192.
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FIG. 4. Domain density (i.e., number of domains, divided by
the system size) as a function of time for L � 16 384, averaged
over 100 samples. The dotted line is a power-law fit (slightly
shifted for better visibility) with exponent of 1�zm � 0.542. For
comparison, a power law with exponent 20.5 is also shown
(dashed line).

dynamics of surface. This choice leads to zm � 2 for
a . 1, and zm � 2��2 2 a� for a , 1. From the scal-
ing behavior of the KPZ equation, we find a � 2�3 for
a colored noise dominated by the slope fluctuations, and
therefore zm � 3�2. This is identical to the dynamical
critical exponent zh for the height variable, which means
that the height imposes its characteristic time scale on the
order parameter. This result for zm would presumably be
correct if the domain walls were uniformly distributed
along the surface. However, due to their tendency to move
downhill, they are preferentially found near valleys. A
different scaling of the slope fluctuations in the valleys
may be the reason for the nontrivial value of zm. Indeed,
for short times, before the domain walls have moved to
their preferred positions, the exponent 3�2 is seen in the
simulations.

The dynamics of domain walls on a growing KPZ sur-
face bears some resemblance to the advection of a passive
scalar in a turbulent velocity field, which is characterized
by nontrivial exponents and multiscaling [8]. If we ne-
glect interactions between domain walls, and treat them as
independent “dust particles” floating on the KPZ surface,
the Langevin equation for the particle density r is

≠tr � K=2r 1 a�=h ? =r 1 r=2h� 1 zr . (5)

The second term describes the advection of particles along
a velocity field �y � =h. Indeed this transformation maps
the KPZ equation into the Burgers equation for a vorticity-
free, compressible fluid flow [7]. Equation (5) is a spe-
cial case of Eq. (3) for m, with r � u � c � 0, b � a,
and with a conserved noise zr . [Together with Eq. (2) for
the height profile, it is also a special case of the equations
used to describe the dynamic relaxation of drifting poly-
mers [9].] In the remainder, we give the results of com-
puter simulations for this case. The rules for the motion
of dust particles are identical to those for domain walls.
However, each particle is treated as if the others were not
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FIG. 5. Mean square displacement of a single domain wall in
a system of size L � 4096. The power-law fit (dotted line) has
an exponent 1.1467, corresponding to zr 
 1.74.

present. This means, in particular, that there is no creation
or annihilation of particles.

Figure 5 shows the mean square displacement of a single
dust particle in a system of size L � 4096. To obtain
good statistics, we averaged over 512 independent and non-
interacting particles, and used more than 40 runs. The
best fit is obtained for zr 
 1.74, distinct from the pre-
vious zm 
 1.85, implying that the exponents depend on
whether or not the domain walls (or dust particles) are con-
served. In contrast to the advection of a passive scalar in
a turbulent velocity field, we find no sign of multiscal-
ing. A fit of the density-density correlation function to
�r�x�r�0�� � 1�x2�12xr � gives an exponent xr 
 0.85.

In summary, the interplay between surface roughening
and phase separation leads to a variety of novel criti-
cal scaling behaviors. At one extreme, the height profile
adapts to the dynamics of critical domain ordering. At the
other, the dynamics of domain wall motion is influenced
by the roughness, exhibiting new and nontrivial scaling
behaviors.
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