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Order of the Phase Transition in Models of DNA Thermal Denaturation
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We examine the behavior of a model which describes the melting of double-stranded DNA chains.
The model, with displacement-dependent stiffness constants and a Morse on-site potential, is analyzed
numerically; depending on the stiffness parameter, it is shown to have either (i) a second-order transition
with n� � 2b � 1, njj � g�2 � 2 (characteristic of short-range attractive part of the Morse potential)
or (ii) a first-order transition with finite melting entropy, discontinuous fraction of bound pairs, divergent
correlation lengths, and critical exponents n� � 2b � 1�2, njj � g�2 � 1.

PACS numbers: 05.70.Jk, 05.70.Fh, 63.70.+h, 87.10+e
Early models of DNA thermal denaturation, i.e., the
separation of the two strands upon heating [1], were based
on an Ising-like description in which a base pair was ei-
ther closed or open; the relative tendencies of the system
to occupy one of the two states were introduced explic-
itly, in terms of temperature-dependent free enthalpies.
As a consequence, although a judicious choice of such
enthalpies has proved useful in describing some aspects
of DNA denaturation [2], understanding of this remark-
able one-dimensional cooperative phenomenon in terms of
standard statistical mechanics—i.e., a Hamiltonian model
with temperature-independent parameters—remained an
outstanding problem.

More recent research has emphasized the role of the
large amplitude fluctuations that precede the transition and
the intrinsically nonlinear mechanisms which are needed to
describe such fluctuations [3]. In such models the status of
a base pair is characterized by the distance between the two
bases. An on-site asymmetric potential with a flat part at
large values of the displacement emulates the tendency of
the pair to “melt” at high temperatures, as thermal phonons
drive the particles outside the well and towards the flat
portion of the potential.

In the original version (“type I” model) coupling be-
tween successive base pairs is harmonic [4]; the resulting
path to the melting instability appears smooth; this is at
variance with the sharp features of the transition observed
experimentally. A generalization [5,6] of the model
to include displacement-dependent stiffness constants,
i.e., “stacking parameters” which describe the coupling
between successive base pairs, has revealed a dramatic
sharpening of the transition. The predictions of the latter
(“type II”) model have been compared successfully with
experimental results [7]. Furthermore, investigations of
heterogeneous DNA have shown that the model yields
features of multistep melting similar to those observed
in experiments [8]. In fact, the authors of Ref. [8] have,
in passing, pointed out the formal analogies between
the melting instability of homogeneous DNA and other
continuous phase transitions, e.g., wetting of a one-
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dimensional interface from a substrate, adsorption of
polymers by a solid surface, etc.; in addition, they have
demonstrated that “type II” models generate an “entropic
barrier” which is largely responsible for the narrowing of
the transition. Their analysis of the order parameter led
them, however, to suggest that, in spite of the dramatic
narrowing of the transition, the critical exponent remains
unchanged. As a result, the exact character of the homo-
geneous DNA transition remained somewhat elusive.

In this Letter, we report on the scaling behavior of the
type-II model of the denaturation of ideal, homogeneous
DNA. We show that, for values of the stacking parameter
used in [6] the type-II model exhibits a peculiar type of
first-order transition, with a finite melting entropy, a dis-
continuity in the fraction of bound pairs (the usual DNA
observable), and divergent longitudinal and transverse cor-
relation lengths [9]; as the value of the stacking parameter
changes, and the range of the “entropic barrier” becomes
shorter than, or comparable to the range of the Morse po-
tential, the transition changes to second order, as in type-
I models.

The Hamiltonian of the model is

H �
X
n

∑
p2

n

2m
1 W� yn, yn21� 1 V � yn� 1 Dhayn

∏
,

(1)

where m is the reduced mass of a base pair, yn denotes the
stretching of the hydrogen bonds connecting the two bases
of the nth pair and pn � m�dyn�dt�. Coupling between
successive base pairs is described by W� yn, yn21� �
K
2 �1 1 re2a� yn1yn21�� � yn 2 yn21�2. The parameter r

can take nonzero values in type-II models; The choice
of this coupling potential is motivated by the observation
that the stacking energy is a property of base pairs rather
than individual bases. The effective coupling constant
decreases from �1 1 r�K to K when either one of the
two interacting base pairs is open, in qualitative agree-
ment with the known properties of base-pair interactions
in DNA. The third term in (1) stands for an on-site
© 2000 The American Physical Society
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potential which describes the interaction of the two bases
in a pair; the Morse potential V � yn� � D�e2ayn 2 1�2

has been chosen because it has the correct qualitative
shape. Finally, the fourth term, which describes the effect
of a transverse, external stress h, is in fact a mathematical
device useful in practical calculations. By letting the di-
mensionless h approach zero from above, it is possible to
extract the scaling behavior near the transition; at the same
time, since the partition function is now divergence free at
any h . 0, a source of criticism of the model on formal
mathematical grounds [10] is removed. The parame-
ters of the model are D � 0.03 eV, K � 0.06 eV�Å2,
a � 4.5 Å21, a � 0.35 Å21, m � 300 amu, and the
lattice constant l � 4.5 Å.

The thermodynamic properties of (1) can be described
[11] in terms of the eigenvalues and eigenstates of the
transfer-integral (TI) equation

a
Z `

2`
dy e2K �x,y��kBTfi� y� � e2´i�kBTfi�x� , (2)

with a symmetrized kernel K�x, y� � W�x, y� 1
1
2 �V � y� 1 V �x�� 1

Dah
2 � y 1 x�; here T is the tem-

perature and kB the Boltzmann constant. Details of the
numerical procedure used in solving (2) have been given
in [6]; in the present study a Gauss-Legendre quadrature
formula has been used. In the gradient expansion (con-
tinuum) approximation, valid in the temperature window
D , kBT , K�a2 [12], the integral equation (2) can
be well approximated by the second-order differential
equation

2
1

dg�x�a2

d2fi

dx2 1 U�x�fi � ẽifi , (3)

where d �
p

2KD�a2��kBT �, g�x� � 1 1 r exp�22ax�,
Dẽ1 � ei 1 �kBT�2� ln�2pa2kBT�K�, DU�x� � V �x� 1

�kBT�2� lng�x�, and the limit h ! 0 has been explicitly
taken.

Of particular interest are (i) the lowest eigenvalue e0,
which, in the thermodynamic limit, is equal to the free
energy per site f, (ii) the ground state f0, which de-
termines the order parameter s � � y� �

R
dyyjf0j

2 and
its fluctuations ��dy�2� �

R
dy� y 2 s�2jf0j

2 (� j
2
�, the

transverse correlation length in the language of wetting
[13]), and (iii) the next-to-lowest eigenvalue, which con-
trols the longitudinal correlation length jjj � lkBT��e1 2

e0�. Computation of the static structure factor S�q, T � �P
n exp�2iqnl� �dyndy0�, where dyn � yn 2 s, requires

knowledge of the full spectrum; in terms of the matrix
elements Mi � �ijxj0�, and the differences Di � �ei 2

e0��kBT ,

S�q, T � �
X

i

0
jMij

2 sinhDi

coshDi 2 cos�ql�
, (4)

where the ground state is excluded from the summation.
For r � 0 (type-I case) the asymptotic properties of

the denaturation instability can be obtained from the so-
lution of the “pseudo-Schrödinger” Eq. (3) with g � 1
[14,15]. In brief: as long as 1 . d . dc � 1�2, there
is a single bound state with ẽ0�D � 1 2 �1 2 dc�d�2

which disappears at d � dc, corresponding to a critical
temperature kBTc � 2

p
2KD�a; in the critical regime pre-

ceding the instability, jtj ø 1, t � T�Tc 2 1, the power
laws l�jjj ~ jtjnjj , s ~ jtjb , and j� ~ jtj2n� hold, with
njj � 2 and n� � 2b � 1. Furthermore, we have cal-
culated the structure factor [16] in the regime qa ø 1,
jjj�l ¿ 1,

S�q, T � �
1

a2�d 2 dc�2

jjj

l
F�qjjj� , (5)

where F�x� � 2x22	1 2 1� cosh�arcsinh�x��2�
. This
implies (i) a zero-field isothermal susceptibility x �
limh!0 a�≠s�≠h�T ~ jtj2g , where g � 4, and (ii) critical
correlations (qjjj ¿ 1), S�q� ~ �qla�221h with h � 0.

It should be noted that the occurrence of a thermody-
namic transition in the one-dimensional model (1) does
not imply a violation of well-known theorems: van-Hove’s
theorem [17] does not apply, since the Hamiltonian in-
cludes an on-site term; furthermore, since there is no sym-
metry breaking (or domain-wall-like solitons) involved, the
standard Landau argument against phase transitions in one
dimension is also inapplicable.

Numerical results for a type-II model (r � 1, a �
0.35 Å21, a�a � 0.078), obtained by solving the TI
equation (2) for various values of T and h, are summa-
rized in Fig. 1 [18]. Below Tc, the difference between the
two lowest eigenvalues, which determines jjj as well as
the singular part of the free energy, is found empirically
to satisfy the scaling equation

e1 2 e0 � 2fsing � DjtjF

µ
h

jtj3�2

∂
, (6)

with the limiting forms F�x� � F0 1 F1x 1 F2x2 1

· · · �x ø 1� and F�x� ~ x2�3�x ¿ 1�; it follows that njj �
1, g � 2, and 2b � 1�2. The values of the first two criti-
cal exponents are in very good agreement with those
obtained directly from our zero-field results for the
longitudinal correlation length and the susceptibility,
respectively (cf. Fig. 2). The order parameter and, to
a lesser extent, the transverse correlation length (also
shown in Fig. 2) reveal significant deviations from pure
power-law behavior—presumably due to strong transients
(cf. below); results are, however, roughly consistent with
n� � 1�2.

It is possible to follow the transition from type-I to
type-II behavior by continuously varying the stacking pa-
rameter a, at constant r � 1. We have done this using
numerically evaluated semiclassical (Bohr-Sommerfeld)
eigenvalues of Eq. (3). The results, shown in Fig. 3, in-
dicate that a crossover takes place at a�a � 0.5. Smaller
values of a�a correspond to a longer—yet finite—range
of the entropic barrier, compared with that of the Morse
7
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FIG. 1. Type II critical behavior: the dependence of �e1 2
e0��Djtj on the scaling variable h�jtj3�2 is shown for 4 different
values of h and a range of temperatures; the dotted line marks
the slope 2�3.

potential; one obtains the type-II exponent, njj � 1. As
a�a increases and the range of the entropic barrier be-
comes shorter than that of the Morse potential, the entropic
barrier becomes irrelevant to critical behavior; one obtains
the type-I exponent, njj � 2.

Equation (6) states that the singular part of the zero-field
free energy depends linearly on the temperature. In other

FIG. 2. Zero-field results in the type-II case. The longitudinal
correlation length jjj (circles, left axis), the square root of the
susceptibility x (triangles, left axis), the order parameter s
(diamonds, right axis), and its root-mean-square fluctuations j�

(squares, right axis) as a function of jtj. The dashed and dashed-
dotted lines correspond to njj � g�2 � 1 and n� � 1�2,
respectively.
8

FIG. 3. The difference between the lowest eigenvalue of
Eq. (3) and the bottom of continuum band, as a function of the
reduced temperature, calculated numerically for various values
of the ratio a�a, within the Bohr-Sommerfeld quantization
scheme. The asymptotic slope, which gives the critical exponent
njj, changes from 1 to 2, as the stacking parameter varies
from type-II (a�a , 1�2) to type-I (a�a . 1�2) values. The
dashed and dotted lines have slopes of 1 and 2, respectively.

words, the value of the exponent njj � 1 implies a first-
order transition. For our parameter set, the correspond-
ing melting entropy is DS�kB � �D��kBTc��F0 � 0.75
(cf. inset in Fig. 4).

At this point, a comment on the fraction of bound
pairs is in order; it is this quantity which one measures
for DNA, using UV absorbance, rather than the order
parameter. In the type-I model, the probability of finding
a given base pair at an equilibrium distance smaller than b
(equal to the fraction of bound pairs, with a proper choice
of b), is given in terms of the incomplete gamma function,
i.e., P� y , b, T � � 1 2 g�2d 2 1, 2de2ab��G�2d 2

1�, and approaches zero continuously as T ! Tc, in-
dependently of the choice of b. This is not the case in
type II behavior. It can be seen in Fig. 4 that there is a
step discontinuity in the fraction of bound pairs; the exact
magnitude of the step depends on the choice of b, but
the discontinuity appears to be an intrinsic property of
the type-II ground state wave function; the subtlety lies
in the fact that, although there is a long tail which causes
the divergence of s, a finite weight of jf0j

2 originates in
finite displacements. This is to be contrasted with type-I
behavior, where more and more weight is shifted to
infinity as the transition is approached. Therefore, the
experimental detection of the fraction of bound pairs in
terms of the function P� y , b, T �, provides accurate
information about the true order of the transition; the
order parameter itself diverges smoothly at the transition



VOLUME 85, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 3 JULY 2000
FIG. 4. The fraction of bound base pairs P� y , 2 Å, T� as a
function of the T�Tc for the type I (triangles) and II (diamonds).
Inset: the entropy S�T��NkB (symbols as in main figure); the
length of the double arrow represents the estimate of the melting
entropy obtained from the scaling Eq. (6). The solid lines are
“guides to the eye.”

and might, due to transients which mask the leading-order
asymptotics, be less suited for a detailed study, even if it
were readily available by experimental methods. This is a
fortunate natural coincidence.

In summary, we have presented a complete scaling anal-
ysis of a simple model which has been developed in order
to describe the melting of “homogeneous” DNA. In terms
of biophysical applications, our results should be comple-
mented by the analysis of Ref. [8] to account for the effects
of heterogeneity. We feel, nonetheless, that there is a direct
gain from the analysis presented here: the melting of a
double-stranded chain—a fairly general problem of bio-
logically motivated statistical physics—has been shown
to be a true thermodynamic transition with different types
of critical behavior, depending on the details of the inter-
action parameters. It would be interesting to speculate on
whether other varieties of thermal biomolecular denatura-
tion (e.g., protein unfolding) could be studied in terms of
related models of low-dimensional phase transitions.

This work has been partially supported by EU Contract
No. HPRN-CT-2000-00163 (LOCNET network).

[1] R. M. Wartell and A. S. Benight, Phys. Rep. 126, 67
(1985).
[2] D. Poland and H. A. Scheraga, J. Chem. Phys. 45, 1456
(1966); 45, 1464 (1966).

[3] S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A.
Krumhansl, and S. Litwin, Proc. Natl. Acad. Sci. U.S.A.
777, 7222 (1980).

[4] M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755
(1989).

[5] T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E
47, R44 (1993).

[6] T. Dauxois and M. Peyrard, Phys. Rev. E 51, 4027
(1995).

[7] A. Campa and A. Giansanti, Phys. Rev. E 58, 3585
(1998).

[8] D. Cule and T. Hwa, Phys. Rev. Lett. 79, 2375 (1997).
[9] First-order transitions with divergent correlation lengths

have been previously reported in the context of wetting:
V. Privman and N. M. Svrakic, Phys. Rev. B 37,
5974 (1988); R. Blossey and J. O. Indekeu, 52, 1223
(1995).

[10] Y-L Zhang, W-M Zheng, J-X Liu, and Y. Z. Chen, Phys.
Rev. E 56, 7100 (1997).

[11] J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11, 3535
(1975).

[12] R. A. Guyer and M. D. Miller, Phys. Rev. A 17, 1205
(1978).

[13] D. M. Kroll and R. Lipowsky, Phys. Rev. B 28, 5273
(1983); R. Lipowsky, Phys. Rev. B 32, 1731 (1985).

[14] L. D. Landau and E. M. Lifshitz, Quantum Mechanics,
Non-Relativistic Theory (Pergamon, New York, 1977), 3rd
ed., p. 72; M. M. Nieto and L. M. Simmons, Phys. Rev. A
19, 438 (1979).

[15] There is an extensive mathematical literature on weakly
bound eigenstates of the one-dimensional Schrödinger
equation. We mention here the work of (a) B. Simon, Ann.
Phys. (N.Y.) 97, 279 (1976), (b) M. Klaus, ibid. 108, 288
(1977), (c) M. Klaus and B. Simon, ibid. 130, 251 (1980),
and (d) R. Blanckenberg, M. L. Goldberger, and B. Simon,
ibid. 108, 69 (1977). The problem with applying the
conclusions of these papers to the present problem is that
they impose various requirements of boundedness on the
potential, which the repulsive core of the Morse potential
cannot meet. Interestingly, paper (c) predicts in the case
of three dimensions and for states of nonzero angular
momentum (i.e., with a rotational barrier), linear, rather
than quadratic dependence of the bound state energy on
the distance from threshold; this does parallel our findings
on the critical exponent njj for cases with and without
entropic barrier, respectively.

[16] The details of the calculation will be reported elsewhere.
[17] L. van Hove, Physica (Amsterdam) 16, 137 (1950).
[18] The transition temperature was estimated by exploiting the

“topological” difference occurring in a family of s�T , h� vs
T plots for various small fields: all the “low temperature”
plots give a finite limit as h ! 0; the “high temperature”
plots give a divergent s�T , 0�. The procedure determines
Tc within a relative error of 3 3 1025.
9


