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The recently proposed scaling law relating the diffusion coefficient and the excess entropy of a liquid
[M. Dzugutov, Nature (London) 381, 137 (1996)] is tested for several metals using molecular dynamics
simulations. Interatomic potentials derived from the embedded atom method are used to study Ag, Au,
Cu, Ni, Pd, Pt, NizAl, and AuPt and the angular dependent Stillinger-Weber form is used to investi-

gate Si.

PACS numbers: 66.10.Cb

To understand such important material processing
techniques as binary solidification and glass formation,
a knowledge of the liquid state diffusion coefficient is
required. Despite its fundamental importance, however,
the diffusivity remains an elusive quantity. It is very
difficult to measure experimentally and, unlike crystalline
solids, it is not fully understood how the diffusion co-
efficient depends on the structure and thermodynamics
of the liquid. Our current knowledge of liquid transport
properties was advanced recently by Dzugutov [1] who
proposed a universal scaling relationship between the
excess entropy of a liquid and the diffusion coefficient.
The excess entropy is the total entropy minus the ideal gas
contribution.

The Dzugutov scheme is based on two main proposi-
tions. First, short range repulsive interactions govern the
transfer of energy and momentum in the liquid and this in-
teraction can be approximated by binary hard sphere col-
lisions. Thus, the diffusion coefficient, D, is expressed
in dimensionless form, D*, via D* = DT "l¢~2, where
o is the hard sphere diameter and I' is the collision fre-
quency according to the well-known Enskog theory of
atomic transport [2]:

I' = 40%g(0)p 1/ % . (3)

Here g(o) is the radial distribution function evaluated at
the hard sphere diameter [in practice o may be interpreted
as the position of the first peak in the g(r)], m is the
mass of the diffusing species, p is the number density, and
kpT has the usual meaning of Boltzmann’s constant times
temperature.

The second idea central to the universal scaling law is
that the frequency of local structural relaxations in the lig-
uid dictates cage diffusion and is proportional to the num-
ber of accessible configurations in the system. Therefore,
the normalized diffusivity D* is proportional to e®, where
S is the excess entropy per atom expressed in units of
kp. In the original Dzugutov work the excess entropy was
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approximated by the two-body approximation [3] which is
denoted S; and is given by

§2 = —2mp fo (e nfg(P)] — [g(r) — 12 dr.
2)

Dzugutov demonstrated the validity of the scaling law for
several model liquids, including, Pb, Cu, Lennard-Jones
(LJ), and hard sphere systems, but in all cases a simple
pair potential was employed in the simulations. If true,
the Dzugutov scaling law is a very important finding in
that it links the dynamic behavior of a liquid with a static
thermodynamic quantity, S, or, if the S, approximation
is valid, it provides a very elegant example of an experi-
mentally accessible structure-property relation in a liquid.
However, in order to confidently label the scaling law uni-
versal, the hypothesis must be tested with different forms
of the interatomic potential, for example, multibody poten-
tials and potentials which include angular dependent con-
tributions. Thus it is the purpose of this Letter to test the
Dzugutov idea by computing the diffusivities, radial distri-
bution functions, and excess entropies for several liquids
using atomistic computer simulations, where embedded
atom potentials are used for various late transition metals
and noble metals and the Stillinger-Weber (SW) scheme
[4] is employed to study Si. The embedded atom method
(EAM) [5,6] has been shown to yield quite accurate pre-
dictions for various structural [7,8], thermodynamic [8,9]
and atom transport properties [8,10—13] of liquid metals
and alloys and, as such, the scaling behavior will be tested
for “real” liquids. Specifically, we have studied the pure
systems Ag, Au, Cu, Ni, Pd, and Pt. For the case of Si
it should be noted that the angular dependent SW scheme
has been used by Yu, Wang, and Stroud [14] to study the
structure and dynamics of liquid Si and Ge. This paper is
confined to metal systems, Si being metallic in the liquid
state [14].

Dzugutov also examined two binary mixtures. In the bi-
nary case the scaled variables for each species were found
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by simply replacing the quantities o, p, g, and m in
Egs. (1) and (2) with the relevant values for each individ-
ual component in the mixture. The fact that the scaling
law is also obeyed for the binary construction is somewhat
surprising as one would intuitively expect the partial radial
distribution function g1,(r) and an interatomic distance be-
tween species 1 and 2 to appear in the scaling relation-
ship. It is possible that the binary systems investigated by
Dzugutov are ideal in the sense that no strong short range
order exists in the liquid. Therefore, in this paper we will
also extend the Dzugutov scaling law to general binary
liquids and demonstrate its validity on two metallic alloys
which exhibit differing degrees of chemical short range
order, namely, NizAl and AuPt. The Ni-Al system is char-
acterized by a strong unlike (i.e., Ni-Al) bond, and hence
the nearest neighbor shell of Ni(Al) in the liquid contains
a greater than average number of AI(Ni) atoms, whereas
liquid AuPt exhibits a slight preference for like bonds.
The first step in evaluating the scaling behavior is to
critically test the S, approximation of the excess entropy.
Equilibrated liquid structures for various temperatures
were generated using Monte Carlo (MC) simulations on
periodic cells containing 2048 atoms. The equilibration
was performed using 10° steps per atom, and approxi-
mately 50 configurations were employed to generate the
radial distribution functions. For Ag, Au, Cu, Pd, and
Pt the EAM potential due to Foiles, Baskes, and Daw
[15] was utilized and, to check for possible effects due
to the specific EAM parametrization, the Voter and Chen
[16] potential has been used for Ni and NizAl. From the
equilibrated liquids, diffusion coefficients were obtained
from molecular dynamics simulations using a time step of
1 fs and a total time of 50 ps. In the molecular dynamics
simulations a microcanonical ensemble was used with
the volume chosen from Monte Carlo simulations such
that the average pressure was zero. The velocity-velocity
correlation functions were obtained by averaging over all
atoms in the system and over several time origins; the
integral over all time of the velocity-velocity correlation
functions yields the diffusion coefficient [17]. For a more
detailed description of the Monte Carlo and molecular dy-
namics simulations, the reader is referred to Refs. [8] and
[13]. A wide range of temperatures have been examined
in the study. Ag, Au, Cu, Pd, and Pt were studied over
the range 1500—2200 K, and for Ni and the NizAl alloy a
slightly larger range was investigated (1500-3000 K).
Figure 1 shows the scaled diffusion coefficient D*
[Eq. (1)] vs S, as computed from Eq. (2), and the results
are compared to the original best fit determined by
Dzugutov (dashed line). Although the scaling law holds
reasonably well for the pure elements, there is some
scatter in the data, more so than the original Dzugutov
work, and the trend with temperature appears to be
slightly nonlinear [18]. It must be emphasized that the
scatter exhibited in Fig. 1 does not necessarily invalidate
the basic proposition of Dzugutov (InD* is proportional
to S) but it may suggest that the S, approximation is
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FIG. 1. The scaled diffusion coefficient vs the S, approxi-
mation of the excess entropy for various EAM liquid metals.
Entropy is expressed in units of kg. The dashed line is the rela-
tionship found in the original work of Dzugutov.

not completely reliable when utilizing EAM potentials.
Baranya and Evans [19] compared the true excess entropy,
obtained via thermodynamic integration, with the S,
approximation for Lennard-Jones systems. It was found
that the difference between the actual excess entropy and
the approximate S, value was nearly constant over a wide
range of densities and the constant offset will merely
translate into a constant shift of the data on the semilog
scale of Fig. 1. In other words, it is reasonable to assume
that for the simple model systems studied by Dzugutov
the S, description is a very good approximation, but for
the density dependent, many-body EAM potential the
approximation is less accurate. There is another important
point to be gleaned from Fig. 1. The filled symbols
represent the individual diffusivities of Al and Ni in the
NizAl binary. Since many of the points lie well off the
dashed line, it is clear that the simple prescription for
treating binaries proposed by Dzugutov is not accurate.
Therefore, the second step in testing the scaling law
involves two procedures: (i) a more reliable determination
of the excess entropy is needed and (ii) a proper scaling
form for binaries must be formulated. The determination
of the true excess entropy involved two separate calcula-
tions. We have computed the excess entropy for all of the
elements at 1500 K by a lambda integration technique [20]
using a common initial state. The common reference state
is a Lennard-Jones system at reduced density p* = 0.85
and reduced temperature 7 = 0.8. The reduced variables
correspond to a point well within the fluid region of the
LJ phase diagram [21,22]. The modified and truncated LJ
potential due to Broughton and Gilmer [23] was employed
throughout. The lambda integration yields the Helmholtz
free energy change by evaluating the statistical average
(8E/8A)) (E is the potential energy), where A varies from
zero to unity and represents the change of the interatomic
potential from the LJ state to the EAM form. Since the
integration path is performed at constant temperature,
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the entropy change is determined via AS = (AH — AF)/
kgT. Since the computation of AS involves the differ-
ence of two fairly large values, the Helmholtz energy
change AF and the enthalpy change AH, the lambda in-
tegration is very sensitive to uncertainties in the statistical
averaging. Therefore, the value of lambda was changed
in small steps of 0.1 and at each lambda the 2048 atom
cell was equilibrated for 1000 time steps and statistics
were then generated for a total of 4000 time steps. The
accuracy of the AS computation was checked by compar-
ing the entropy with that obtained from a Monte Carlo
thermodynamic integration (see below). The values of AS
agree to within 0.03kp, less than the size of the symbols
in Figs. 1 and 2. In addition, the uncertainty in the AS
computation was tested by repeating the calculations using
a different LJ starting point (T* = 1.25, p* = 0.75). The
difference in the two results was much less than the 0.03kp
quoted above.

The final step in the determination of the true excess
entropy is evaluating AS from an initial state of 1500 K
to a final state of any desired temperature. For this change
we have used Monte Carlo simulations to compute the
enthalpy as a function of temperature and have integrated
the thermodynamic relation d(G/T)/dT = —H/T?,
where G is the Gibbs free energy. The determination
of free energies and excess entropies for the binary
liquid is slightly more complicated. Here thermodynamic
integration is performed at constant 7 and P by using the
relationship between composition and chemical potential
differences generated from a MC simulation performed in
the transmutation ensemble. Details of this procedure are
described fully in Ref. [8].

As alluded to above, the second step in evaluating the
Dzugutov scaling law is to formulate a scaling function
for a binary mixture. The extension of the Enskog theory
collision frequency [see Eq. (1)] to a binary mixture has
been discussed by Jacucci and MacDonald [24]. By using
their result, the relevant scaled diffusivity of species 1 in
a binary liquid can be written as D} = D x; !, where the
scale factor is given by

kgT
X1 = 40?811(0'1)131‘/ 5
mi

m(my + mo)kgT
+ 40?2812(012)P2\/ 12 2EB
miniy

3

An analogous scaling variable can be defined for species
2 by simply interchanging index 1 and 2 in Eq. (3). No-
tice that the two particle masses now appear. In addition,
the scale factor now includes the mixed species radial dis-
tribution functions g1,(r) and g»1(r) which are important
for liquids exhibiting chemical short range order and it
contains the effective hard sphere distance o, which is
necessary in treating liquids with significant atomic size
mismatch.

We can then define a single scaled diffusion coefficient
for a binary liquid in the following way. Note that the
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total excess entropy is given by § = ¢15; + ¢S5, where
c is the concentration and §; is the partial molar entropy
of species i. Furthermore, since the scaling law relates the
diffusivity to ¢S, it is reasonable to assume a D* of the

form
D\ ( D>\
(N e
X1 X2

Figure 2 shows the main results of this investigation; it
plots the log of D* vs —AS for all the simulations stud-
ied. Clearly the Dzugutov scaling law is valid for all EAM
systems. With the use of a more accurate excess entropy
calculation rather than the S, form, there appears to be less
scatter in the data and the linearity with temperature for a
given element is obeyed very well. The scatter observed
in Fig. 2 is well within the uncertainty of the lambda in-
tegration technique. The solid line in the figure represents
the best fit to the data and, within the numerical uncer-
tainty, is consistent with the scaling prediction. The least
squares fit to the EAM data yielded a slope of 1.06 with
an uncertainty of =0.07. (The intercept differs from the
Dzugutov value due to the different reference state used
for the entropy calculation.) Also encouraging is the fact
that the binary results (filled symbols) are consistent with
the scaling law, indicating that the definitions appearing in
Egs. (3) and (4) are appropriate.

The third and final test of the Dzugutov scaling law
concerns the simulation results for Si. Recall that, unlike
the central force nature of the EAM potential, the SW
form for Si includes angular dependent contributions to
the bonding. Perhaps the most notable feature of Fig. 2 is
the failure of Si to obey the scaling law. The D™ results for
Si are consistently higher than the EAM data and the slope
of the line is slightly lower. We believe the discrepancy
shown in Fig. 2 is due to the very different liquid structure
observed for Si which is a direct consequence of the strong
angular bonding. The frequency term given in Eq. (1)
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FIG. 2. D" vs the excess entropy difference —AS for the vari-
ous liquid metals and alloys. The solid line is the best fit to the
data. The downward pointing arrow denotes a correction to the
Si data point as described in the text.
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contains the average velocity of an atom in the liquid as
well as the probability that a given atom will collide with
its local nearest neighbor shell. In the Dzugutov formula-
tion all details of local structure are approximated by re-
placing the actual g(r) in the region of the nearest neighbor
distance by its value at the first peak, i.e., g(o). In liquids
characterized by central force potentials—EAM, Lennard-
Jones, hard sphere, etc.—the first peak in the radial distri-
bution is very sharp; atoms are on average surrounded by
a well-defined cage and the collision frequency described
by Eq. (1) is adequate. In Si the angular bonding leads to
a very different liquid structure. In addition to the strong
first peak in g(r) there exists a small peak on the high-r
side. This shoulder becomes more pronounced at lower
temperatures (see, for example, Ref. [14]). Thus in Si the
first neighbor shell actually consists of two closely spaced
shells, and assigning a unique collision frequency as in
Eq. (1) is no longer appropriate. Based on the very dif-
ferent structure observed for liquid Si, it is perhaps not
surprising that such a large discrepancy is seen in Fig. 2.

In support of the proposal that the collision frequency
expression is in error for Si, we have performed the fol-
lowing crude analysis. The two-peak structure of g(r) for
Si suggests, to a first approximation, that one can replace
the quantity o2g(c) in Eq. (1) with the sum oig(oy) +
o3g(0>), where the subscripts 1 and 2 refer to the posi-
tions of the two closely spaced peaks in g(r). In other
words we have effectively replaced the first nearest shell
with two shells of atoms. It should be noted that the co-
ordination number found by integrating g(r) over these
first two peaks is 8. This simple two-shell model was ap-
plied to a representative Si data point and the new scaled
D* is indicated in Fig. 2 by the downward pointing arrow.
The corrected data point is in quite good agreement with
the EAM data. [The simple analysis could not be applied
to every data point because at high temperatures the two
peaks in g(r) merge to such an extent that the second posi-
tion could not be defined. It is also interesting to note that
at high temperatures where the g(r) approaches a single-
peak structure the Si data approach those of the EAM.]
Although the two-shell model is much too crude to draw
quantitative conclusions, it does suggest that the source of
the discrepancy for the case of Si stems from the approxi-
mate form used for the collision frequency and when the
collision term is appropriately accounted for the resulting
D™ scales with the entropy.

In summary, the simulation results presented here point
to a number of caveats to the proposed scaling law of
Dzugutov which relates the scaled liquid diffusivity to the
excess entropy. For central force, multibody EAM poten-
tials the scaling law is obeyed provided the actual excess
entropy is used rather than the simple two-body S, approxi-
mation. Also, the scaling law is valid for EAM binary
mixtures, but a more general expression for the collision
frequency is required. Finally, Dzugutov scaling does not
hold for the case of Si as modeled by an interatomic poten-

tial which contains three-body angular dependent terms. It
is proposed that the simple collision frequency term devel-
oped for hard spheres cannot adequately capture the more
complicated local atomic structure observed in liquid Si.
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