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Quantum Communication between Atomic Ensembles Using Coherent Light
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Protocols for quantum communication between massive particles, such as atoms, are usually based on
making use of nonclassical light, and/or superhigh finesse optical cavities are normally needed to enhance
interaction between atoms and photons. We demonstrate a remarkable result: by using only coherent
light, entanglement can be generated between distant free space atomic ensembles, and an unknown
quantum state can thus be teleported from one to another. Neither nonclassical light nor cavities are
needed in the scheme, which greatly simplifies its experimental implementation.

PACS numbers: 03.67.Hk, 03.65.Bz, 42.50.–p
The goal of quantum communication is to transmit an
unknown quantum state from one particle to another one
at a distant location. This can be obtained either by direct
transmission of the state [1], or by disembodied transport,
i.e., quantum teleportation [2]. Quantum teleportation of
an unknown state from a photon to a photon [3,4], or from
a single-mode beam of light to another [5] has been demon-
strated experimentally. A desired goal is to perform quan-
tum teleportation of the state of massive particles, since the
massive particles are ideal for storage of quantum infor-
mation, and they play an important role in local quantum
information processing, such as quantum computation. At
the same time, the information should be transferred from
one location to another via optical states, since light is the
best long distance carrier of information. There have been
several proposals for quantum teleportation of atomic mo-
tional or internal states, by transmitting single-photon or
nonclassical light [6–8]. Most of these proposals are based
on the assumption that atoms are trapped inside high-Q op-
tical cavities, which is difficult to achieve experimentally
[6,7]. The recent proposal [8] eliminates this requirement;
however, it still requires an external source of entangle-
ment (nonclassical light). Here we propose and analyze
an atomic quantum teleportation scheme, in which quan-
tum entanglement between free-space atomic ensembles
is achieved by using only coherent light. This result is
remarkable, since strong coherent light (light from an or-
dinary laser) is usually thought to be “purely classical,”
but via it quantum entanglement can be achieved, and un-
known internal states of free-space atomic ensembles can
nonetheless be teleported from one location to another.

The system we are considering is a cloud of identical
atoms with the relevant level structure shown in Fig. 1.
Each atom has two degenerate ground states and two de-
generate excited states. The transitions j1� ! j3� and
j2� ! j4� are coupled with a large detuning D to propagat-
ing light fields with different circular polarizations. This
kind of interaction has been analyzed semiclassically in
[9], and recently shown to be applicable for quantum non-
demolition measurements [10,11] and teleportation with
nonclassical light [8], with an adiabatic Hamiltonian.
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We create entanglement between two atomic en-
sembles through a nonlocal Bell measurement with
the schematic setup shown by Fig. 2. We assume a
one-dimensional model for the propagating light field.
As shown in Ref. [12], this is justified if the atomic
ensemble is of a pencil shape with Fresnel number
F � A�l0L � 1. Here A and L are the cross sec-
tion and the length of the ensemble, respectively, and
l0 is the optical wave length. The input laser pulse
is linearly polarized and expressed as E�1��z, t� �p

h̄v0�4pe0A
P

i�1,2 ai�z, t�ei�k0z2v0t�, where v0 �
k0c � 2pc�l0 is the carrier frequency, and i denotes
two orthogonal circular polarizations, with the standard
commutation relations �ai�z, t�, aj�z0, t�� � dijd�z 2 z0�.
The light is weakly focused with cross section A to match
the atomic ensemble. For a strong coherent input with
linear polarization, the initial condition is expressed as
�ai�0, t�� � at , while the total photon number over the
pulse duration T satisfies 2Np � 2c

RT
0 jatj

2dt ¿ 1. The
Stokes operators are introduced for the free-space input
and output light (light before entering or after leaving the
atomic ensemble) by S

p
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c
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In free space, ai�z, t� depends only on t � t 2 z�c, and
then the Stokes operators satisfy the spin commutation
relations �Sp

y , Sp
z � � iS

p
x . For our coherent input, we

have �Sp
x � � Np and �Sp

y � � �Sp
z � � 0. With a very

large Np , the off-resonant interaction with atoms is
only a small perturbation to S

p
x , and we can treat S

p
x

FIG. 1. Level structure of the atoms.
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FIG. 2. Schematic setup for Bell measurements. A linearly
polarized strong laser pulse (decomposed into two circular po-
larization modes a1, a2) propagates successively through the two
atomic samples. The two polarization modes �a1 1 ia2��

p
2

and �a1 2 ia2��
p

2 are then split by a polarizing beam splitter
(PBS), and finally the difference of the two photon currents (in-
tegrated over the pulse duration T) is measured.

classically by replacing it with its mean value �Sp
x �. Then,

we define two canonical observables for light by Xp �

S
p
y �

q
�Sp

x �, Pp � Sp
z �

q
�Sp

x � with a standard com-
mutator �Xp , Pp� � i. These operators are the
quantum variables we are interested in. Similar op-
erators can be introduced for atoms. For an atomic
ensemble with many atoms, it is convenient to de-
fine the continuous atomic operators smn�z, t� �

limdz!0
1

rAdz

Pz#zi,z1dz
i jm�i�nj �m, n � 1, 2, 3, 4� with

the commutation relations �smn�z, t�, sn0m0�z0, t�� �
�1�rA�d�z 2 z0� �dnn0smm0 2 dmm0sn0n�. In the defini-
tion, zi is the position of the i atom, and r is the number
density of the atomic ensemble with the total atom num-
ber 2Na � rAL ¿ 1. The collective spin operators are
introduced for the ground states of the atomic ensemble by
Sa

x �
rA
2

RL
0 �s12 1 s

y
12� dz, Sa

y �
rA
2i

RL
0 �s12 2 s

y
12� dz,

Sa
z �

rA
2

RL
0 �s11 2 s22� dz. All the atoms are initially

prepared in the superposition of the two ground states
�j1� 1 j2���

p
2 (this can be obtained with negligible noise

by applying classical laser pulses with detuning D ¿ g),
which is an eigenstate of Sa

x with a very large eigen-
value Na. As before, we treat Sa

x classically, and define
the canonical operators for atoms by Xa � Sa

y �
p

�Sa
x �,

Pa � Sa
z �

p
�Sa

x � with �Xa, Pa� � i and an initial vacuum
state. As shown below, after the laser pulse passes through
the atomic ensemble, the off-resonant interaction changes
the canonical operators according to

Xp0 �
q

1 2 ´p �Xp 2 kPa� 1
p

´p Xp
s ,

Xa0 �
p

1 2 ´a �Xa 2 kPp� 1
p

´a Xa
s , (1)

Pb0 �
q

1 2 ´b Pb 1
p

´b Pb
s , �b � a, p� ,

where the symbols with (without) a prime denote the op-
erators after (before) the interaction, and Xa

s , Pa
s and X

p
s ,

P
p
s are the standard vacuum noise operators with vari-

ance 1�2. The interaction and damping coefficients k, ´p ,
´a are given, respectively, by k � 22

p
NpNa jgj2�Dc,

´p � Najgj2g�D2c, ´a � Npjgj2g0�D2c, where g is the
coupling constant and g, g0 are spontaneous emission rates
5644
(see Fig. 1). Equation (1) is obtained under the condi-
tions ´p,a ø 1 and k ø

p
Np,a. For our applications,

we would like to have k * 1. This is possible if we
choose Np 	 Na ¿ 1 and D ¿ g. The number match-
ing condition Np 	 Na is an important requirement ob-
tained here to minimize the noise effect, since we have
k � 2

p
´p´a D�

p
gg0 and the best choice is ´p 	 ´a to

increase the signal-to-noise ratio.
Before we proceed to demonstrating Eq. (1), we show

that this transformation allows us to generate entangle-
ment, and to achieve quantum communication between
atomic ensembles using only coherent light. Entanglement
is generated through a nonlocal Bell measurement of the
EPR operators Xa

1 2 Xa
2 and Pa

1 1 Pa
2 with the setup de-

picted by Fig. 2. This setup measures the Stokes opera-
tor X

p0
2 of the output light. Using Eq. (1) and neglecting

the small loss terms, we have X
p0
2 � X

p
1 1 k�Pa

1 1 Pa
2 �,

so we get a collective measurement of Pa
1 1 Pa

2 with
some inherent vacuum noise X

p
1 . The efficiency 1 2 h of

this measurement is determined by the parameter k with
h � 1��1 1 2k2�. After this round of measurements, we
rotate the collective atomic spins around the x axis to get
the transformations Xa

1 ! 2Pa
1 , Pa

1 ! Xa
1 and Xa

2 ! Pa
2 ,

Pa
2 ! 2Xa

2 . The rotation of the atomic spin can easily
be obtained with negligible noise by applying classical
laser pulses with detuning D ¿ g. After the rotation,
the measured observable of the first round of measure-
ment is changed to Xa

1 2 Xa
2 in the new variables. We

then make another round of collective measurement of the
new variable Pa

1 1 Pa
2 . In this way, both the EPR op-

erators Xa
1 2 Xa

2 and Pa
1 1 Pa

2 are measured, and the fi-
nal state of the two atomic ensembles is collapsed into a
two-mode squeezed state with variance d�Xa

1 2 Xa
2 �2 �

d�Pa
1 1 Pa

2 �2 � e22r , where the squeezing parameter r
is given by

r �
1
2

ln�1 1 2k2� . (2)

Thus, using only coherent light, we generate continuous
variable entanglement [13] between two nonlocal atomic
ensembles. With the interaction parameter k � 5, a high
squeezing (and thus a large entanglement) r � 2.0 is ob-
tainable. Note that entanglement generation is the key step
for many quantum protocols, and is the basis of quantum
communication, quantum cryptography, and tests of Bell
inequality. In the following, we show as an example how
to achieve indirect quantum communication, i.e., quantum
teleportation, between distant atomic ensembles using only
coherent light.

We consider unconditional quantum teleportation of
continuous variables [5,14,15] from one atomic ensemble
to the other since we have continuous variable entangle-
ment. To achieve quantum teleportation, first two distant
atomic samples 1 and 2 are prepared in a continuously
entangled state using the nonlocal Bell measurement
described above. Then, a Bell measurement with the same
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setup as shown by Fig. 2 on the two local samples 1 and
3, together with a straightforward displacement of Xa

2 ,
Pa

2 on the sample 2, will teleport an unknown collective
spin state from the atomic sample 3 to 2. The teleported
state on the sample 2 has the same form as that in the
original proposal of continuous variable teleportation
using squeezing light [15], with the squeezing parameter
r replaced by Eq. (2) and with an inherent Bell detection
inefficiency h � 1��1 1 2k2�. The teleportation quality
is best described by the fidelity, which, for a pure input
state, is defined as the overlap of the teleported state and
the input state. For any coherent input state of the sample
3, the teleportation fidelity is given by

F � 1

¡ µ
1 1

1
1 1 2k2 1

1
2k2

∂
. (3)

Equation (3) shows, if there is no extra noise, a high fidelity
F � 96% would be possible for the teleportation of the
collective atomic spin state with the interaction parameter
k � 5.

Next we will include noise and derive expressions for the
squeezing and the fidelity under realistic experimental con-
ditions. Before we analyze the effects of noise, let us first
demonstrate Eq. (1) with a full quantum approach. The
demonstration of Eq. (1) including the spontaneous emis-
sion noise is necessary in the following context: First, it is
not clear that the spontaneous emission is indeed negligible
w
g

e
n
i
n
T

a

through a simple estimation of the noise, since during the
interaction approximately

NpNajgj2g

D2c atoms in the atomic en-
semble (normally much larger than 1) will be subjected to
quantum jumps caused by the spontaneous emission [14].
We need to show that quantum jumps of individual atoms
have negligible influence on the collective spin operators
which are the quantities of interest. Second, the maximally
allowable interaction parameter k is mainly limited by the
noise. We need a balance between the desired interaction
and the noise to maximize the squeezing and the telepor-
tation fidelity. Third, some subtle experimental require-
ments, such as the number matching condition Np 	 Na,
is obtainable only by considering the noise.

With introduction of the continuous atomic operators,
the interaction between atoms and the propagating light
E�1��z, t� is described by the following Hamiltonian (in
the rotating frame):

H � h̄
X

i�1,2

Z L

0

Dsi12,i12�z, t�

1 �geik0zai�z, t�si12,i�z, t�

1 H.c.��rA dz , (4)

where the coupling constant g �
p

v0�4p h̄e0A d and d
is the dipole moment of the ji� ! ji 1 2� transition. Cor-
responding to this Hamiltonian, the Maxwell-Bloch equa-
tions are written as [16]
µ

≠

≠t
1 c

≠

≠z

∂
ai�z, t� � 2ig�e2ik0zrAsi,i12�z, t� ,

≠

≠t
smn � 2

i
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�smn , H� 2
gmn

2
smn 1

p
gmn �snn 2 smm�Fmn�m , n� , (5)

here the spontaneous emission rates (see Fig. 1) are, respectively, g13 � g24 � g �
v

3
0 jdj

2

3pe0 h̄c3 , g14 � g23 � g0, and
12 � 0 (the ground state coherence time is much longer than the interaction time scale considered here under realistic
xperimental conditions [9,10]). The Doppler broadening caused by the atomic motion is negligible, since it is elimi-
ated for off-resonant interactions with the collinear input and output light. Assuming that the spontaneous emission
s independent for different atoms (because the distance between atoms is larger than optical wave length), the vacuum
oise operators Fmn satisfy the d-commutation relations �Fmn�z, t�, Fy

m0n0�z0, t0�� � �1�rA�dmm0dnn0d�z 2 z0�d�t 2 t0�.
o simplify Eq. (5), first we change the variables by t � t 2 z�c, and then adiabatically eliminate the excited states j3�
nd j4� of atoms in the case of a large detuning, i.e., D ¿ g�ai�z, t�� 	 g

q
Np��cT �. The resultant equations read

≠

≠z
ai�z, t� �

ijgj2rAsii

Dc
ai�z, t� 2

jgj2rAgsii

2D2c
ai�z, t� 1

g�e2ik0zrA
p

g sii

Dc
Fi,i12�z, t� ,

≠
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s12 �

ijgj2�ay
2 a2 2 a

y
1 a1�

D
s12 2

jgj2g0�ay
2 a2 1 a

y
1 a1�

2D2 s12 1

p
g0

D
�g�e2ik0za

y
2 s11F14 1 geik0za1s22F

y
23� .

(6)
The physical meaning of the above equation is quite
clear: The first term on the right-hand side is the phase
shift caused by the off-resonant interaction between
light and atoms, and the second and the third terms
represent the damping and the corresponding vacuum
noise caused by the spontaneous emission, respectively.
In Eq. (3), the sii and a

y
i ai are approximately constant
operators, only with a small damping caused by the
spontaneous emission. To consider the spontaneous
emission noise to the first order, it is reasonable to assume
constant sii and a

y
i ai for Eq. (6). Then, this equation

can easily be solved by integrating over z, t on both
sides. In this way we obtain Eq. (1) with the introduced
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canonical operators. The vacuum noise operators in
Eq. (1) are defined from the integration of Fmn�z, t�,
X

p
s �

q
c�4NpNajgj2

RT
0

RL
0 rA�ig�e2ik0z�ay

2 s11F13 2

a
y
1 s22F24� 1 H.c.� dz dt, for instance. It should be noted

that the damping term cannot be directly neglected in
Eq. (6) compared with the phase shift term, even when
D ¿ g, since �ay

2 a2 1 a
y
1 a1� ¿ �ay

2 a2 2 a
y
1 a1�. What

is remarkable is that due to the collective effect, the phase
shift term obtains another large prefactor

p
Np,a when

we perform the integration in Eq. (6), which makes this
contribution well exceed the noise term. It is helpful
to give an estimation of the relevant parameters for
typical experiments. The interaction parameter k can be
rewritten as k � �3rl

2
0Lg���8p2D� with Np � Na. For

an atomic sample of density r 	 5 3 1012 cm23 and of
length L 	 2 cm, k 	 5 is obtainable with the choice
D 	 300g, and at the same time the loss ´p 	 ´a , 1%.

As our last point, let us return to the analysis of the
influence of some important noise terms on the teleporta-
tion fidelity. The noise includes the spontaneous emission
noise described by Eq. (1), the detector inefficiency, and
the transmission loss of the light from the first sample to
the second sample. The spontaneous emission noise can
be included partly in the transmission loss and partly in
the detector efficiency, so we do not analyze it separately.
The effect of the detector inefficiency hd is to replace
k2 in Eqs. (2) and (3) with k2�1 2 hd�, and the tele-
portation fidelity is decreased by a term hd�k2, which is
very small and can be safely ignored. The most important
noise comes from the transmission loss. The transmission
loss is described by X

p
2 �

p
1 2 ht X

p0

1 1
p

ht Xt
s (see

Fig. 2), where ht is the loss rate and Xt
s is the standard vac-

uum noise. The transmission loss changes the measured
observables to be

p
1 2 ht Xa

1 2 Xa
2 and

p
1 2 ht Pa

1 1

Pa
2 . These two observables do not commute, and the two

rounds of measurements influence each other. To mini-
mize the influence on the teleportation fidelity, we choose
the following configuration (for simplicity, we assume we
have the same loss rate ht from the sample 1 to 2 and
from 1 to 3): In the nonlocal Bell measurements on the
samples 1 and 2 (the entanglement generation process), we
choose a suitable interaction coefficient k2 (where its opti-
mal value will be determined below) for the second round
measurement, whereas k1 for the first round of measure-
ment is large with k

2
1 ¿ k

2
2 (the interaction coefficient can

be easily adjusted, for instance, by changing the detuning).
In the local Bell measurement, we choose the same k2 for
the first round of measurement and the large k1 for the
second round of measurement. For a coherent input state
of the sample 3, the teleported state on the sample 2 is
still Gaussian, and the teleportation fidelity F0 is found
to be
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F0 � 2

¡ µ
2 1

1

k
2
2

1 k2
2ht

∂
# 1��1 1

p
ht � , (7)

which is still independent of the coherent input state with
suitable gain for the displacements [5,15]. The optimal
value for k2 is thus given by k2 � 1� 4

p
ht . Even with

a notable transmission loss rate ht 	 0.2, quantum tele-
portation with a remarkable high fidelity F 	 0.7 is still
achievable. It is known that for coherent inputs a fidelity
exceeding 1�2 has ensured quantum teleportation [17].

In summary, we have shown that quantum communica-
tion between free-space atomic ensembles can be achieved
using only coherent laser beams. Quantum teleportation
of the atomic spin state is observable even in the presence
of significant noise. This result, together with the much
simplified experimental setup proposed here, suggests that
efficient quantum communication between atomic samples
is within reach of present experimental conditions.
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