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Theory of Tunneling Spectroscopy in Ferromagnetic Nanoparticles
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We present a theory of the low-energy excitations of a ferromagnetic metal nanoparticle. In addition
to the particle-hole excitations, which occur in a paramagnetic metal nanoparticle, we predict a branch
of excitations involving the magnetization-orientation collective coordinate. Tunneling matrix elements
are in general sizable for several different collective states associated with the same band configuration.
We point out that the average change in ground state spin per added electron differs from noninteracting
quasiparticle expectations, and that the change in the spin polarization, due to Zeeman coupling, is
strongly influenced by Coulomb blockade physics.

PACS numbers: 73.40.Gk, 73.20.Dx, 73.23.Hk, 75.60.–d
The energies of many-particle states in metallic nanopar-
ticles and semiconductor quantum dots can be measured
directly by tracking the dependence of resonant tunneling
conductance peaks on gate and bias voltages [1]. This
technique has been used to study the interaction physics
of quantum dots at weak fields [2] and in the quantum
Hall regime [3], and metallic nanoparticles in both super-
conducting [4] and normal [5] states. In zero-field semi-
conductor quantum dots at high densities and in normal
metallic nanoparticles, experiments are generally consis-
tent with a model which acknowledges electron-electron
interactions only in a mean-field electrostatic term that,
because of its long range, gives rise to the Coulomb block-
ade effect [6]. The success of this simple interpretation is
a consequence of the Fermi-liquid character of these inter-
acting electron systems.

The present work is motivated by recent experimental
studies [7] of tunneling via discrete energy levels in ferro-
magnetic cobalt nanoparticles that find resonance spacings
smaller than predicted in an independent particle picture,
and a dependence on external field qualitatively different
from those in paramagnetic metal nanoparticles. Since
bulk ferromagnetic metals have low-energy spin-wave ex-
citations in addition to their Fermi liquid particle-hole ex-
citations, it is natural, as suggested [7] by Guéron et al.,
to seek an explanation in terms of the collective quan-
tum physics of the magnetic order parameter field. In this
Letter we address the interplay of quasiparticle and collec-
tive order parameter excitations in tunneling spectroscopy
studies of ferromagnetic nanoparticles. Our conclusions
are based in part on the properties of a simple exactly
solvable toy model, described in the following paragraphs.
We conclude that only states in which all singly occupied
nanoparticle orbitals have aligned spins are relevant at low
energies in ferromagnetic nanoparticles, and use this obser-
vation to derive expressions for the tunneling amplitudes
of ground and excited many-particle collective spin states.
Near fields where magnetization reversal occurs, many of
these low-energy spin states have large tunneling ampli-
tudes, and contribute significantly to the tunneling spec-
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trum, partly explaining the enhanced density of resonances
seen in experiment.

In ferromagnetic metals, short-range exchange interac-
tions favor spin alignment, giving rise to an approximately
rigid spin splitting of quasiparticle energies in the ferro-
magnetic ground state. Our toy model reflects this rigidity
by assuming identical exchange constants between all pairs
of orbitals:
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In Eq. (1) ej is a nanoparticle orbital energy that incorpo-
rates the charge correlation physics neglected in our model
Hamiltonian and �t is the Pauli spin matrix vector. The
single-particle orbitals have an average spacing inversely
proportional to the volume of the nanoparticle and are ex-
pected to exhibit spectral rigidity [8]. The many-particle
spectrum of this Hamiltonian follows readily from the fol-
lowing observations: (i) the total occupation of each or-
bital is a good quantum number; (ii) the interaction term
is proportional to the square of the total electron spin op-
erator �Stot. The 2Ns states with a given set of Ns singly
occupied orbitals have their band energy degeneracy lifted
by the interaction energy 2�U�2�Stot�Stot 1 1�, where the
total spin Stot has a maximum value Ns�2. We show be-
low that only this �Ns 1 1�-fold degenerate spin multiplet
is relevant to the low-energy physics of a ferromagnetic
nanoparticle.

We start by considering the ground state of a ferromag-
netic metal nanoparticle in which majority and minority
spin quasiparticles are occupied up to their Fermi ener-
gies. We take these to have the values eFa and eFi in the
absence of an external magnetic field at a reference total
particle number. We are interested in how the nanoparticle
evolves as a function of external field and gate voltage. We
assume, for simplicity, that the quasiparticle energy levels
© 2000 The American Physical Society 5623
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of majority and minority spins are equally spaced near their respective Fermi energies. It follows from the considerations
of the previous paragraph that the total energy, relative to that of the reference state, is
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In this energy expression, da,i are level spacings, and we
have added by hand the electrostatic Coulomb blockade
term, which depends only on the total number of particles
in the grain. The terms proportional to D in Eq. (2) origi-
nate from the interaction energy 2UStot�Stot 1 1��2; the
notational change U ! D��2S0 1 1� is motivated by the
identification, explained below, of D as the spin-splitting
energy of the quasiparticle bands. Here S0 � �Na0 2

Ni0��2 is the ground state total spin of the reference state
and Stot � S0 1 �dNa 2 dNi��2. Note that for a ferro-
magnetic particle S0 will be proportional to volume. We
have not explicitly indicated the capacitance ratio relating
the gate voltage and the chemical potential of the nanopar-
ticle, and have assumed that only Zeeman coupling to an
external field is important.

Stability of the reference system ground state requires
that its energy increases at fixed total particle number N
both for Stot ! S0 1 1 (dNa � 1, dNi � 21) and Stot !
S0 2 1 (dNa � 21, dNi � 11). From this it follows that

jeFa 2 eFi 2 D 1 �da 2 di��2j , �da 1 di

2 2D��2S0 1 1�� .
(3)

Since the right-hand side of Eq. (3) �N21
A , where NA

is the number of atoms in the grain, it follows that D �
eFa 2 eFi to within a fluctuating mesoscopic correction,
5624
i.e., that D is the quasiparticle spin splitting. The energy
difference between the Stot � �Na 2 Ni��2 states retained
in our considerations and the Stot # �Na 2 Ni��2 2 1
states we have discarded is D2S0��2S0 1 1� � D, well
outside the energy range of interest [9].

It is instructive to minimize the energy by considering
Na and Ni as continuous variables, thereby obtaining the
trend lines around which the mesoscopic ground state spin
and charge quantum numbers fluctuate as gate voltage and
external field vary. We find that

C21
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(4)
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The inverse capacitance matrix C21 describes the coupled
spin and charge response of the nanoparticle. This cou-
pling is responsible for the variation of total particle num-
ber with external field observed [10,11] by Ono et al.

Equation (4) can be solved to obtain the variation of
both Na and Ni with either Vg or B. For example, we
find that
dStot

d�gmBB�
�
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Ecb�da 1 di 2 D�S0� 1 dadi 2 D�da 1 di��4S0

, (6)
and that
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Level spacings and exchange splittings in metallic ferro-
magnet nanoparticles can be estimated from spin-density
functional band structure calculations. For the case of co-
balt particles [12] da � 5.55 eV�NA, di � 1.43 eV�NA,
2S0 � 1.65NA, and D�2S0 � 1.07 eV�NA. The Coulomb
blockade energy is sensitive to the screening environment
of the nanoparticle; for a grain with NA � 1500, Guéron
et al. [7] find that Ecb $ 30 meV. As expected, the largest
elements in the inverse capacitance matrix are the purely
electrostatic Coulomb blockade contributions. Evaluat-
ing the right-hand side of Eq. (7) we find that Stot al-
most always decreases when particles are added. The
response of Stot to external fields, given by Eq. (6), is
smaller than would be expected naively, because Ecb , the
dominant mesoscopic energy scale, suppresses charge fluc-
tuations causing the larger (majority spin) level spacing
to limit this response. Typically the relatively large value
of Ecb suppresses the total charge response to both gate
voltage and external field. For example, for NA � 1500
and Ecb � 30 meV, typical for the particle size studied
by Guéron et al. [7], we find that dNa � 0.0025dVg 1

0.306d�gmBB� and dNi � 0.0302dVg 2 0.321d�gmBB�
with energies in meV.

In the model discussed so far, structure would appear
in the bias dependence of the tunneling current only on
the scale of the single-particle level spacing. Following
Guéron et al. [7], we seek an explanation of experiment
by invoking spin-orbit coupling and long-range dipole in-
teractions between the electronic spins. In cobalt, the typi-
cal band energy shift due to spin-orbit coupling is [13]
dE � 1 meV; the dependence of the total band energy on
spin-moment orientation results from a partially canceling
sum of spin-orbit energy shifts over all singly occupied
orbitals. The typical spin-orbit matrix element between an
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individual pair of orbitals in a grain is �dE�NA, �1 meV
for the grain sizes of interest to us. These considerations
justify starting from a model which neglects spin-orbit
coupling of states with different band configurations and
uses the bulk magnetocrystalline anisotropy coefficient to
describe its effect within a single multiplet:

H � H 2 K�Sz�S0�2, (8)

where, for cobalt [14], K � 0.073NA meV. Note for
NA � 1500, K � 0.1 eV, much larger than either level
spacing or Coulomb blockade energy scales.

A theory of tunneling spectroscopy in ferromagnetic
nanoparticles requires results for tunneling matrix ele-
ments between many-body eigenstates, found by diago-
nalizing the collective spin Hamiltonian

H � Eband 2 K�Sz�S0�2 2 gmB
�B ? �S (9)

� Eband 2 K�S0�S2
z �S0 1 aB̂ ? �S� , (10)

where K�S0 � 0.05 meV is the natural energy scale
and a � gmBB��K�S0� � 2B�T� is the (dimensionless)
strength of the magnetic field. In Fig. 1 we plot the energy
eigenvalues En as a function of the expectation value of
Sz for the corresponding eigenstates jS0, n	 for S0 � 25
and B̂ oriented at uext � p�4 from the easy axis, ẑ.

The curves are offset for clarity, starting at the bottom
with a � 22. For large negative a the ground state spin
is polarized along the field direction, and gradually reori-
ents toward 2ẑ as the field is ramped to zero. At a � 0
a level crossing occurs and the ground state is now polar-
ized along ẑ. The former ground state, now classically
metastable and separated from the true ground state by
a potential barrier, is apparent in the spectrum until the
classical switching field is reached at aSW � 11.2. The
classical down-sweep metastable states appear at negative
values of a and positive values of 
S0, njSzjS0, n	.

In order to evaluate the many-particle tunneling matrix
elements, we express these eigenstates in terms of micro-
scopic electronic degrees of freedom. For a given set of
quasiparticle occupations, the microscopic state for collec-
tive spins oriented in direction V̂ � V̂�u, f� is
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c
y
k,"c

y
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(11)

where D and S are the sets of doubly and singly oc-
cupied orbitals, respectively; V"�V̂� � cos�u�2� exp�if�
and V#�V̂� � sin�u�2� exp�2if�.
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FIG. 1. Energy eigenvalues En vs 
S0, njSzjS0, n	 for the col-
lective spin Hamiltonian. The curves, offset for clarity, corre-
spond to increasing values of a, starting from a � 22 at the
bottom. Here S0 � 25 and B̂ is oriented at p�4 from the easy
axis, ẑ. At a � asw � 1.2, the metastable state disappears.

The matrix element between states with collective spin
orientations V̂0 and V̂ for adding an electron with spin
orientation V̂ext to an empty orbital, thereby increasing Ns

and Stot, is


C�V̂0�jcy�V̂ext�jC�V̂�	1 � 
V̂0 j V̂	Ns

1�2
V̂0 j V̂ext	1�2 ,
(12)

where 
V̂0 j V̂	1�2 is the inner product of spin-1�2 coherent
states [15].

Similarly the matrix element for adding an electron with
spin orientation 2V̂ext to a singly occupied orbital, thereby
decreasing Ns and Stot is


C�V̂0�jcy�V̂ext�jĈ�V̂�	2 � 
V̂0 j V̂	Ns21
1�2 
V̂ j V̂ext	1�2 .

(13)

The tunneling spectral function is defined as

A6�v� �
X
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3 d�v 2 �E�Ns61��2,n 2 ENs�2,0�� , (14)

where j�Ns 6 1��2, n	, E�Ns61��2,n are collective spin
eigenstates and eigenvalues of H in the Stot � S0 6

1�2 � �Ns 6 1��2 manifold, respectively. To evaluate the
matrix elements in Eq. (14), we expand these eigenstates
first in terms of eigenstates of Sz and then in terms of spin-
coherent states [15] with a definite V̂. Using Eqs. (12)
and (13), we finally arrive at the simplified expressions
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X
s

X
m0

X
m

Vs�V̂ext�cm0
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2
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¿
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where cm
n �Ns� are the expansion coefficients of jNs�2, n	;


 Ns61
2 m0 j

Ns

2 m; 1
2s	 are Clebsch-Gordan coefficients for

adding the angular momenta S0 � Ns�2 and s � 1�2.
Many-particle tunneling spectra for S0 � Ns�2 � 25

and uext � p�4 are illustrated in Fig. 2: In these “up-
sweep” calculations, we chose jNs�2, 0	 to be the true
ground state for a , 0 and a . asw. In the field in-
terval 0 , a , asw, however, we allowed the system to
be initially in the metastable stable, discussed in Fig. 1.
These figures clearly show that the tunneling spectra have
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FIG. 2. The tunneling spectral function for the collective spin
model, at different values of the magnetic field, specified by
a. The solid and dashed lines refer to the Stot ! S0 6 1 tran-
sitions, respectively. S0 � 25 and B̂ is oriented at p�4 from
the easy axis ẑ. For 0 , a , asw � 1.2, the system is in a
metastable state (see Fig. 1), before the tunneling takes place.
In (e), a is near asw, where the metastable state disappears and
the magnetization reversal occurs.

a regime near the classical switching field, where many
excited states contribute, giving rise to a dense tunneling
spectrum, like that seen in experiment.

For a particular ferromagnetic metal particle at a given
gate voltage, the onset tunneling spectra can be dominated
by an intermediate state with either increased or decreased
particle number. In either case, the lowest energy multiplet
could have Stot � S0 6 1�2, although decreases will be
more common for particle addition and increases for par-
ticle removal, as we have discussed. The calculations pre-
sented here can explain a dense tunneling spectra with level
spacing �K�S0 rather than d near the classical switching
field, but not at general fields. The magnetic anisotropy
energy landscape of a realistic nanoparticle is certain to
be more complex than in our model calculation. There
is clearly a shape anisotropy, since the particles used in
the experiment are approximately hemispherical. A self-
consistent calculation [16] on small, irregularly shaped
clusters predicts a magnetic anisotropy energy that can be
much larger than the one we have used here. If this were
the case, this energy scale would no longer be a candi-
date for explaining the experiment. Note, however, that
for ellipsoidal particles, the shape anisotropy constant is
comparable to the bulk constant [14]. On the other hand,
magnetostatic interactions with nearby particles and more
subtle surface effects [17] are probably important but much
harder to estimate. Finally, nonequilibrium effects [7,18]
and spin-orbit coupling between different band multiplets
could also contribute significantly to the ubiquity of dense
tunneling spectra observed in experiment.
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