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Frequency map analysis was first used for the dynamical study of numerical simulations of physical
systems (solar system, galaxies, particle accelerators). Here it is applied directly to the experimental
results obtained at the Advanced Light Source. For the first time, the network of coupling resonances is
clearly visible in an experiment, in a similar way as in the numerical simulation. Excellent agreement
between numerical and experimental results leads us to propose this technique as a tool for improving
numerical models and actual behavior of particle accelerators. Moreover, it provides a model-independent
diagnostic for the evaluation of the dynamical properties of the beam.

PACS numbers: 29.27.Bd, 05.45.Ac, 05.45.Pq, 29.20.Lq
(I) Introduction.—The Advanced Light Source (ALS)
is a third generation synchrotron light source located at
Lawrence Berkeley National Laboratory [1]. High energy
electrons produce synchrotron radiation as they circulate
around its 200 m circumference storage ring. The mag-
nets which are distributed around the ring form the mag-
netic lattice: dipoles for guiding the electrons, quadrupoles
for focusing, and sextupoles for correction of chromatic
aberrations of electron motion. Electrons with initial con-
ditions that are not exactly on the central closed orbit will
tend to oscillate about it, and the magnetic optics needs
to be adjusted properly so that these oscillations remain
stable. There are several reasons for this. First, one wants
to be able to quickly fill the ring with electrons (“high in-
jection efficiency”). One also wants the electrons to remain
in the ring for many hours (“long beam lifetime”). Both
injection efficiency and beam lifetime are affected by the
stability of electron motion. If their motion at large am-
plitudes is unstable, electrons scattered to these large am-
plitudes via collisions with gas particles or other electrons
may be lost. Similarly, electrons injected at large ampli-
tude may not be captured. Thus high injection efficiency
and long beam lifetimes require a large stable region in
which electrons will survive.

As in other third-generation light sources, the ALS stor-
age ring includes strongly focusing quadrupoles that are re-
quired to reduce the beam’s emittance. These quadrupole
magnets generate large chromatic aberrations that must be
corrected with sextupole magnets. The sextupoles in turn
generate geometrical and nonlinear chromatic aberrations,
exciting resonances that can make the motion of the elec-
trons unstable. A resonance occurs when there is an integer
relation between the horizontal and vertical betatron tunes
nx , ny , and the longitudinal revolution frequency n, which
is normalized to n � 1, i.e.,

Nxnx 1 Nyny 1 R � 0 , (1)
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where Nx , Ny , and R are integers. If the lattice is M-
fold periodic, its dynamics is the same as the dynamics
of a single sector with longitudinal frequency n0 � M.
A resonance will occur only when R � R0 3 M, that is,
when R is evenly divisible by M. The ALS magnetic
lattice is constructed of twelve identical sectors. This 12-
fold periodicity will thus suppress many resonances.

(II) Frequency Map Analysis.—It is well known that
resonances can lead to irregular and chaotic behavior for
the orbits of particles, which eventually will get lost by
diffusion in the outer parts of the beam, thus reducing its
lifetime. It has therefore been a constant concern for accel-
erator dynamicists to design lattices in order to avoid reso-
nances of low order (jNxj 1 jNyj) which are thought to be
the most dangerous. Unfortunately, there is no simple way
to forecast the real strength of a resonance without using
a tracking code which numerically simulates the evolution
of beam particles using a model of the lattice in which
each element (quadrupole, sextupole, etc.) is represented
by a different Hamiltonian of simple form [2]. The study
of such noncontinuous Hamiltonian systems is performed
using a surface of section corresponding to a fixed plane of
given location in the lattice (s � 0, where s is the longitu-
dinal position). The return map for this surface of section
is a four-dimensional symplectic map with transverse posi-
tions �x, y� and momenta �px , py� as canonical coordinates.

The dynamics of this four-dimensional symplectic map
is analyzed using Laskar’s frequency map analysis (FMA)
method [3–7]. Briefly speaking, FMA constructs numeri-
cally a map from the space of initial conditions to the fre-
quency space. More precisely, two of the initial conditions
are fixed (here x � y � 0), and px , py are taken on a grid
of initial conditions. For each selected initial condition
�px0, py0�, the equations of motion of the particle are inte-
grated numerically, and the evolution of the trajectory in
the four-dimensional surface of section s � 0 is followed
by recording the values of x�t�, y�t�, px�t�, py�t� over an
© 2000 The American Physical Society



VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
interval of time �0, T �. Then, using a numerical algo-
rithm based on some refined Fourier technique (see [6]),
we search for a quasiperiodic approximation of zx�t� �
x�t� 1 ipx�t� and zy�t� � y�t� 1 ipy�t� of the form

zw�t� � aw0einwt 1

NX

k�1

aw
mk

ei�mk ,n�t , (2)

where w � x, y, n � �nx , ny , 1�, mk � �m1k , m2k , m3k� is
a multi-index, and �mk , n� � m1knx 1 m2kny 1 m3k . If
the trajectory is a regular trajectory, KAM (Kolmogorov,
Arnold, Moser) theory (see [8]) ensures that zw�t� is quasi-
periodic of the form (2), with fundamental frequencies
�nx , ny , 1�. In this case, the frequencies can be determined
with very high accuracy since the algorithm converges
asymptotically like 1�T4 to the true values [6]. Thus, on
the set A of initial momenta leading to regular KAM
orbits, we can construct the frequency map F : A ,
R2 ! R2 : �px0, py0� ! �nx , ny� which associates the
fundamental frequencies �nx , ny� to the initial momentum
variables �px0, py0� of the corresponding orbit. Moreover,
since the numerical algorithm always yields a quasiperi-
odic approximation of the trajectories, this map F is
defined numerically on the entire space of initial momenta
�px0, py0�. On the set of orbits which are not regular, the
behavior of this map is unknown, but we are ensured that
the frequency map is regular on the set A of regular initial
conditions, or more precisely, as this set is discontinuous,
the restriction of the map to A can be extended in a
smooth diffeomorphism F̃ on an open set B of R2 which
coincides with F on A [6,9]. We are thus ensured that
when the map F is not regular, the orbits are chaotic, in
the sense that they are not KAM quasiperiodic solutions.
FMA also allows one to measure precisely the diffusion
of orbits in the frequency space [4,5].

For practical use, FMA has the advantage of providing
a clear and intuitive view of the global dynamics of the
whole phase space of the system. This is illustrated by
Fig. 1 which represents the image in the frequency plane
�nx , ny� of a grid of initial momenta �px0, py0� with track-
ing over 1000 turns. This is about 1�20 of the damping
time due to synchrotron radiation which has been ignored
in the computations. In the lattice model the chromatic-
ity is adjusted to be slightly positive—which is how the
real machine is operated. This is done using two fami-
lies of sextupoles that exist in the storage ring. In Fig. 1,
the lattice is supposed to be ideal, with a complete 12-fold
periodicity. The working point, that is, the tunes at the
center of the beam, is set to (14.25, 8.18). As the initial
amplitude of the particle increases, the tunes shift away
from the working point. Initial conditions with zero verti-
cal or horizontal amplitude correspond, respectively, to the
lower-right and upper-left envelopes of the plot. The lines
appearing in this figure are resonant lines revealed by the
distortion of the frequency map. In the vicinity of these
resonant lines appear chaotic zones corresponding to non-
regular behavior of the frequency map.
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FIG. 1. Frequency map of the ALS for an ideal lattice.

For a number of reasons (e.g., errors in the manufacture
of magnets) the machine is not perfect, and the existence
of defects reduces the extent of the regular region by de-
stroying the 12-fold periodicity and exciting resonances
which appear only with very small amplitude in an ideal
machine. Figure 2 shows the image of the frequency map
for a realistic case, where the fitted linear (normal and cou-
pling) magnetic errors have been included in the model
[10]. It is clear that the stable region in this new model
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FIG. 2. Frequency map of the ALS for the lattice with mea-
sured errors.
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is significantly reduced in comparison with the ideal lat-
tice (Fig. 1). The reduction is most prominent for particles
with large horizontal amplitude, as seen by a reduction in
vertical extent of the map. It appears therefore that one
of the main issues in particle accelerator dynamics is the
search for a model which accurately describes the dynam-
ics of real machines. This would allow one to compensate
for the machine defects and to improve its performance.
Ideally, one would like to observe the real dynamics of the
beam while the machine is working. Indeed, at the ALS, it
is now possible to obtain an experimental frequency map
which provides for the first time a picture of the global
dynamics of the real beam.

The ALS storage ring is equipped with two tools to per-
form measurements for the frequency map. The first tool
is a set of two fast pulsing magnets called “pinger mag-
nets.” Each pinger magnet’s pulse time is only 600 ns.
This is less than the time it takes for electrons to execute
one turn around the ring. Therefore these magnets can pro-
vide a “single-turn” transverse kick to the electrons. The
first magnet (the horizontal pinger) provides only a vertical
field, and similarly the second (the vertical pinger) pro-
vides only a horizontal field. The amplitudes of the hori-
zontal and vertical fields may be adjusted independently.
Together both pinger magnets are able to deliver a vari-
able amplitude single-turn horizontal and vertical kick to
the electron beam. The second tool used for frequency
map measurement is a single-turn beam position monitor
(BPM). Each turn, the BPM measures the transverse cen-
ter of charge of the electron beam as it revolves around
the ring. The BPM can store up to 1024 consecutive data
and is synchronized with the pinger magnet pulse. In this
way it is possible to record the beam position of the first
1024 turns after the beam is kicked by the pinger magnets.

(III) Experimental conditions.—During an experiment,
the ring is filled with a train of electron bunches that ex-
tends over 1�8 of the ring. The total current is 10 mA,
which corresponds to 4 3 1010 electrons. The beam is
kicked by the pinger magnets and the turn-by-turn posi-
tion of the center of charge of the train of electron bunches
is measured by the BPM.

During each experimental run, two sets of measurements
are taken. The first data set is used to calibrate the linear
model. The second one is a set of turn-by-turn data for
the frequency map. During these measurements, in order
to obtain a regularly distributed image, the square of the
horizontal and vertical pinger strengths are evenly spaced.
The data acquisition time for each point is about 20 sec,
or about 4 hours for the 600 initial conditions of the fre-
quency map.

For the first experiment the ALS storage ring was set up
close to the nominal condition for operation. The betatron
tunes were adjusted to nx � 14.25 and ny � 8.18, and the
chromaticities to zx � 0.5, zy � 1. The linear magnetic
lattice was measured and adjusted to make it as close to 12-
fold periodic as possible. The frequency analysis was per-
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formed with 25 by 25 initial conditions (Fig. 3a). The most
striking feature of this plot is the very clear appearance of
the two strongly excited coupling resonances of 5th order
(4nx 1 ny 2 65 � 0 and 3nx 1 2ny 2 59 � 0). It is re-
markable that these two resonances are “unallowed” reso-
nances for the lattice. Indeed, they do not show up in the
frequency map of the ideal machine (Fig. 1). These reso-
nances are excited by small remaining coupling errors in
the lattice that perturb the periodicity of the ring. In order
to check the lattice model, we also performed FMA of the
numerical simulation with a similar set of initial conditions
(Fig. 3b). The agreement of the two results, experimental
(Fig. 3a) and numerical (Fig. 3b), is excellent, which re-
flects the quality of the adjustment of the lattice model. In
the future, we expect to reduce the acquisition time for the
experimental frequency map, which could then be used as
an interactive on-line monitor of the quality of the beam
dynamics. It will immediately alert us to any unwanted
features of the beam such as destroyed periodicity, or un-
usual working point.

8.10

8.12

8.14

8.16

8.18

8.10

8.12

8.14

8.16

8.18

14.2 14.21 14.22 14.23 14.24 14.25

(a)

(b)

FIG. 3. Experimental frequency map (a), and numerical simu-
lation (b) for the ALS with its current settings. Resonances of
order #5 are plotted with dotted lines.



VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
8.08

8.10

8.12

8.14

8.16

14.23 14.24 14.25 14.26 14.27 14.28

FIG. 4. Experimental frequency map for a previous setting of
the ALS.

As an illustration, we set up the beam at a different
working point �nx � 14.275, ny � 8.167�. In this case,
the experimental frequency map (Fig. 4) shows several
unwanted resonances intersecting at �nx � 14.25, ny �
8.125�. This intersection of active resonances will induce
rapid diffusion of particles with subsequent decrease of the
machine’s performance. Indeed, we observed significant
beam loss at this intersection during the experiment. It is
clear that upon observing such behavior, one should either
find a way to reduce the amplitude of resonances by im-
proving the periodicity of the lattice or change the working
point to another location. In fact, this working point was
the designed ALS working point at which the machine was
operated for several years. At this setting, the injection ef-
ficiency was somewhat erratic and the reason for this was
not clearly understood at the time. The working point was
changed to the present values after observation of the FMA
of a previous numerical model of the lattice [7].

(IV) Conclusions.—Some experiments at other accel-
erators have used pinger/BPM systems to study nonlinear
beam dynamics [11] and attempts have been made to relate
FMA to measured frequencies [12,13]. But to our knowl-
edge, we have presented here for the first time through an
experiment the full network of coupling resonances occur-
ring in such a Hamiltonian dynamical system of 3 degrees
of freedom. This experiment clearly demonstrates how the
complexity of the dynamics of such a system cannot be
reduced to simple resonances of a 2 degrees of freedom
system. This underscores the importance of understanding
the subtle behavior encountered in dynamical systems of
3 degrees of freedom (see [4] and references therein).

Yet it is remarkable that the numerical model (which is
relatively simple) agrees so well with the observed dynam-
ics. This gives us confidence that it may be used effectively
to simulate modifications of the lattice, like insertion of
new devices. We are convinced that the acquisition time
for the experimental frequency map can be decreased sig-
nificantly, and that this technique can be used in the future
as a regular maintenance device for the ALS and similar
machines.
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