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Electron Temperature Gradient Turbulence
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The first toroidal, gyrokinetic, electromagnetic simulations of small scale plasma turbulence are pre-
sented. The turbulence considered is driven by gradients in the electron temperature. It is found that
electron temperature gradient (ETG) turbulence can induce experimentally relevant thermal losses in
magnetic confinement fusion devices. For typical tokamak parameters, the transport is essentially elec-
trostatic in character. The simulation results are qualitatively consistent with a model that balances linear
and secondary mode growth rates. Significant streamer-dominated transport at long wavelengths occurs
because the secondary modes that produce saturation become weak in the ETG limit.

PACS numbers: 52.35.Ra, 52.35.Kt, 52.65.Tt
Understanding and controlling transport which arises
from small scale turbulence in magnetized plasma is a cen-
tral challenge for magnetic confinement fusion research.
Here, we present the first toroidal, electromagnetic,
gyrokinetic simulations of turbulence driven by electron
temperature gradients. Experimentally significant thermal
transport is observed when long wavelength toroidal elec-
tron temperature gradient (ETG) instabilities are unstable.
A straightforward model provides insight into why this
happens.

The equations which describe electrostatic microin-
stabilities driven by ETG [1–4] and by ion temperature
gradients (ITG) are very similar. In fact, the linear
instabilities are exactly the same, except that the species
labels for length and time scales are exchanged. The
length scale for each is the Larmor radius of the nonadia-
batic species, i.e., re and ri , respectively. The time scales
for the two modes are LTe�yte and LTi�yti , where LTs and
yts are the equilibrium temperature gradient scale length
and thermal velocity for species s. In a typical fusion
plasma, ri � 60re and yte � 60yti , so that electron
scale turbulence is characterized by shorter wavelengths
and higher frequencies. Simple mixing length arguments
suggest xs � r2

s yts�LTs � xs0, so that xi � 60xe.
This disparity in anomalous electron and ion thermal

transport is not typically observed in laboratory experi-
ments, suggesting that there could be an important differ-
ence between electron- and ion-scale physics. In part, the
absence of this disparity arises because significant elec-
tron transport is driven by ion-scale turbulence, mostly as
a result of the nonadiabatic response of electrons which
are trapped in low magnetic field regions. This is the ori-
gin of electron thermal transport in the Institute for Fusion
Studies/Princeton Plasma Physics Laboratory [5] model,
for example. However, there are experimental cases [6,7]
in which distinctly anomalous electron thermal transport
is observed without accompanying anomalous ion thermal
transport or ion-scale fluctuations. Here, we address the
basic questions of whether ETG turbulence is a reasonable
candidate for explaining experimental observations such as
these, and if so, why.
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ETG instabilities are characterized by kure � 1, where
ku is a typical poloidal wave number of an eddy. Be-
cause k�ri ¿ 1, the ion response to a perturbation is adi-
abatic: ni � exp�2ZjejF�Ti�. As a consequence, ETG
turbulence drives no particle transport. Instead, it produces
primarily electron thermal flux and possibly current diffu-
sion. Here, k� is a typical wave number of the perturbation
in the plane perpendicular to the magnetic field, Zjej is the
ion charge, F is the fluctuating electrostatic potential, and
Ti is the ion temperature.

The literature suggests that ETG transport could be
(a) of modest size, by analogy [8] with electrostatic ITG
simulations (xe � xe0), (b) near experimental levels be-
cause of electromagnetic effects, with xe � xe0�b [2–4],
where b is the ratio of plasma and magnetic pressures, or
(c) potentially very large, because of the formation of ra-
dially extended eddies (“streamers”) [9,10] whose growth
is limited by secondary instabilities. Our simulations sup-
port the latter view. We also identify the dominant sec-
ondary instabilities which lead to nonlinear saturation, and
the tertiary instabilities that limit the amplitude of zonal
flows.

Electromagnetic, weakly collisional ETG turbulence
satisfies the nonlinear gyrokinetic [11,12] ordering. We
use two independently developed parallel codes [13] to
simulate the gyrokinetic Vlasov-Maxwell system, GENE

and GS2. Each evolves a five-dimensional perturbed
distribution function f � f�x, e, m� on a fixed grid.
GENE is the gyrokinetic generalization of a drift kinetic
code [14]. GS2 is the nonlinear generalization of a
standard gyrokinetic microstability code [15]. In each
code, field-line following coordinates �x, y, z� are used to
describe turbulence in a tube of magnetic flux [10,16,17].
Periodic boundary conditions which take into account the
twist of the magnetic field are used to prevent quasilinear
flattening of the driving gradients [16]. The simulation
results presented here do not include dBk since b ø 1;
GENE simulations also ignore trapped particles. We em-
ploy a high aspect ratio MHD equilibrium characterized
by magnetic shear ŝ, normalized beta gradient a, and
minor�major radius r�R. Reference parameters are safety
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factor q � 1.4, ŝ � 0.8, R�LT � 6.9, R�Ln � 2.2,
Ti � Te, Zeff � 1, a � 0.45, and r�R � 0.18. Here,
L is an equilibrium temperature or density scale length.
A typical simulation domain has Lx � 175re, with
1 , Lx�Ly , 4, and Dx � Dy � 1.8re. Along the field
line, there are 16–32 grid points per 2p. The velocity
space grid is typically 50 3 10. Strongly turbulent ETG
runs require �105 dynamically adjusted time steps.

The turbulent electric and magnetic fields induce radial
thermal transport Q (defined in Ref. [13]). The thermal
diffusivity is defined by x � Q��2n�0�=T �0��, in units of
xs0. As a check on the numerics, we have successfully
benchmarked GS2 and GENE for parameters similar to the
reference parameters. Also, GS2 reproduces [lower curve,
Fig. 1, xi � 0.8xi0] the transport measured in gyroki-
netic particle-in-cell simulations [18] of electrostatic ITG
turbulence.

The turbulent thermal diffusivities vs time shown in
Fig. 1 are typical. The upper curve (normalized to xe0)
is from an electromagnetic ETG simulation. The lower
curve (normalized to xi0) is from an electrostatic (a � 0)
ITG simulation. The larger normalized electron thermal
flux indicates that turbulence on ion and electron scales
is essentially different, and that ETG turbulence may be
strong enough to induce thermal losses of the same order
as ITG turbulence. We observe that large normalized ETG
thermal transport is associated with high amplitude, radi-
ally elongated streamers at the outboard midplane in the
turbulent steady state [Fig. 2].

The simulations do not support the model of Ref. [19],
which predicts large ETG transport from the magnetic non-
linearity. In 16 finite b simulations [Fig. 3], each with
b # 10%, we observe that the ETG heat flux is predomi-
nantly electrostatic, even when the peak in the fluctuation
spectrum lies close to k�d, where d is the collisionless
skip depth. The contribution from magnetic flutter is at
most a few percent of the total heat flux.

FIG. 1. xETG
e (upper curve) and x

ITG
i (lower curve) for similar

parameters.
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We now turn to a model related to ideas in Refs. [10,20]
which provides insight into the simulation results. Given a
finite amplitude linear eigenmode (the “primary” instabil-
ity), we identify “secondary” instabilities, whose growth
rates increase with the amplitude of the primary. The sec-
ondary instabilities eventually grow faster than the primary
mode, until they reach nonlinear amplitudes and saturate
the primary mode. Sheared zonal flows are created from
the breakup of the primary modes. These flows contain a
linearly undamped component that could persist in the tur-
bulent state, lowering the saturation level [18,21,22]. We
also identify “tertiary” instabilities, which limit the ampli-
tude of the zonal flows. Tertiary growth rates are propor-
tional to the amplitude of the zonal flows. In contrast to the
ITG system [22], the dynamics of secondary and tertiary
modes in the ETG system are similar.

First addressing the dynamics of secondary modes, we
consider a simple limit of electron gyrofluid equations [23].
In the limit of a large amplitude primary, the sound wave
coupling and background gradients may be neglected. The
guiding center electron density, perpendicular temperature,
and electrostatic potential satisfy

dn
dt

1
1
2

�=2
�c , T�	 � 0, n � �t 2 �1 1 t�=2

�	c ,

(1)

and dT��dt � 0, where d�dt � ≠�≠t 1 �c , ?	, and
terms of order �k�r�4 have been neglected. (Earlier treat-
ments [9,10] along the lines of the present model neglected
the polarization drift; without it, the present secondary
instability is missing, so that simulations may fail to
saturate.) As in Ref. [22], the relative phase of the tem-
perature and density perturbations in the ETG eigenmode
is such that the perpendicular temperature dynamics do
not significantly affect the results, so we neglect T� here.
Length scales are normalized to re, t � ZeffTe0�Ti0,
n � nphysLTe��ren0�, and c � ecphysLTe��reTe0�.

Ignoring magnetic shear, we consider the lineariza-
tion c � cp� y� 1 c̃� y� exp�gt 1 ikxx�, in which a
crude model of the primary mode structure is given by
cp� y� � cp0 cos�kpy�. Here, kp represents the primary’s
poloidal wave number and cp0 determines its amplitude.
One finds

∑µ
t

1 1 t

∂
g 1 k2

x ḡ

∏
c̃ � ≠y�ḡ2≠y�c̃�ḡ�	 , (2)

FIG. 2. Characteristic f contours in the outboard x-y plane.
This snapshot was taken at the end of the ETG run shown in
Fig. 1. The figure is 256re 3 64re.
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FIG. 3. Nonlinear simulation results for the reference param-
eters as a function of ŝ and a.

with ḡ � g 2 ikxc 0
p� y�. The ETG secondary equation

differs from conventional Kelvin-Helmholtz (KH) because
of the first term on the left-hand side (the ion response).
Balancing this term with the other terms in Eq. (2) leads to
a maximum growth rate �k4

pcp0 for kx � kp . This growth
rate is a factor of �k�re�2 smaller than conventional KH.
Relative to ITG modes, whose secondary instability growth
rates exceed conventional KH [22], secondary instabilities
of ETG modes are quite weak, particularly for small k�re.
This weakening of the secondary instabilities is the main
reason that ETG turbulence saturates at high normalized
levels for some parameters.

A closed form solution of Eq. (2) exists in the limit
�kx ø kp ø 1�, with eigenvalue g � Gk4

p�1 1 t21�cp0,
G � �kx�kp�2�

p
2. For the less restrictive limit kp ø 1,

G may be found numerically [Fig. 4]. Also shown is the
radial component of the velocity of the eigenmode for
kx�kp � 0.75, with kp � 0.1. Boundary layers form at
the nulls c 0

p� y� � 2kpcp0 sin�kpy�, where the coefficient
of the highest derivative term, ḡ � g 2 ikxc 0

p� y�, be-
comes very small (ḡ � g). The width of these layers is
given by kpDy � g��kxkpcp0� � 0.2�1 1 t21�k2

p ø 1.
To accurately resolve these quasisingular regions for a
given kpre requires kyrmax

e � �kpre�21, a challenging
requirement in a simulation with unstable toroidal ETG
modes in the range of kpre � 0.1. Fortunately, one can
show the growth rate is insensitive to the detailed eigen-

(a) (b)

FIG. 4. Secondary instability of long wavelength ETG modes.
(a) Growth rate (b) eigenmode (for kx�kp � 0.75).
mode structure in these singular regions. Moreover, higher
order FLR effects, neglected in this simple model, further
reduce the sensitivity.

For ŝ fi 0, the primary modes twist with the field lines,
causing the physical k2

� to exceed k2
x 1 k2

y . This ef-
fect, which tends to enhance the growth rate of secondary
modes, is reduced by the decrease in the primary mode
amplitude along the field lines, and by higher order FLR
terms not included here. We find the net result is typi-
cally a modest enhancement in g and unstable kx . To un-
derstand this, the previous analysis can be generalized to
allow for ≠z fi 0. Again considering large primary mode
amplitudes, one finds the leading order growth rates of the
2D secondary modes are given by the generalization of
Eq. (2) with ≠2

x 1 ≠2
y ! =

2
� � �≠x 1 ŝu≠y�2 1 ≠2

y :
∑µ

t

1 1 t

∂
g 1 �1 1 ŝ2u2�ḡ00

∏
c̃ � ḡ=2

�c̃ , (3)

where u � 2pqRz. The eigenmodes modes are local-
ized in u (or z) at u values satisfying ≠ug � 0. Ap-
plying the transformation ĉ � e2icyc̃ , c � 2kxŝu��1 1

ŝ2u2� to Eq. (3) and defining k̂2
x � k2

x��1 1 ŝ2u2� and
k̂2

p � k2
p�1 1 ŝ2u2�, Eq. (2) is recovered with hatted vari-

ables. Consistent with this, solving Eq. (3) numerically
with periodic boundary conditions, we obtain maxima in
the growth rate at discrete values of u and k̂x � k̂p , with
gmax � k̂4

pcp0 (the same as before). Maximizing this over
a toroidal ETG mode eigenfunction typically yields less
than a factor of 2 enhancement in g and the associated un-
stable kx .

The predictions of the models just described are in rea-
sonable agreement with the secondary instability growth
rates observed in nonlinear gyrokinetic ETG simulations.
For example, for the reference parameters (except a �
b � 0) with kpre � 0.2 and kxre � 0.5, we find G �
0.3, compared with the expected G � 0.2.

Balancing the primary and secondary mode growth rates
produces a scaling for the normalized saturation level of
the primary modes, fsat � gl�k4

�. For comparison with
nonlinear simulation results described in more detail else-
where [13], we maximize this expression over kx and ky

using the growth rate of the toroidal ETG mode, and
evaluating k4

� by squaring the average k2
� defined in

Ref. [5]. Representative curves are shown in Fig. 5. The
simple model predicts the region of high transport seen
in Fig. 3 reasonably well. Physically, high transport
is predicted when the dominant modes shift to longer
wavelengths. For g � p

vdv�he 2 kkyt , instability
requires kpre * LT ��qR�. Small Ln�R can be strongly
stabilizing [24].

Without curvature, we find that electromagnetic ETG
turbulence saturates at low levels, xe � xe0. We note that
unlike toroidal modes, slab eigenmodes necessarily have fi-
nite kz fi 0. As a result, the saturation of slab modes may
be controlled by a different secondary instability [10]. Be-
cause our slab simulations are qualitatively different and
5581
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FIG. 5. g�k4
�, evaluated for the reference parameters, with

varying ŝ and a.

saturate at low levels, we did not include slab ETG insta-
bilities in the maximization of g�k4

� described above.
The nonlinear development of the secondary instabil-

ities leads to the production of zonal flows, which are
subject to tertiary instabilities. Ignoring the effects of
background gradients, rotational symmetry of Eq. (1) in
the perpendicular plane means that Eq. (2) also describes
tertiary instabilities in ETG turbulence, so that secondary
and tertiary modes in ETG turbulence are both weak. By
contrast, the nature of the adiabatic electron response in
ITG turbulence breaks this symmetry, so that while tertiary
instabilities in the ITG system are weak, the secondary
instabilities are strong [22]. This is consistent with the
larger normalized transport observed in ETG simulations.
To date, we have not observed zonal flow accumulation in
simulations with adiabatic ions.

To summarize, we have addressed questions raised by
experimental evidence of anomalous electron transport
in the absence of ion-scale turbulence. We presented gy-
rokinetic simulations of ETG turbulence. Our simulations
are fully toroidal and electromagnetic. We have shown
that ETG turbulence, which cannot be easily stabilized by
equilibrium scale E 3 B shear because of much higher
growth rates, and despite its characteristic small scales, is a
plausible candidate for explaining these experimental ob-
servations. The high normalized saturation amplitude is
associated with the observation of radially extended
streamers. By identifying the important secondary and
tertiary instabilities, we explained key features of these
structures, and thus explained why normalized ETG trans-
port can be much larger than normalized ITG transport,
despite the fact that the linear instabilities are mathemati-
cally identical. Significant streamer-dominated transport
at long wavelengths occurs because the secondary modes
that produce saturation become weak in the ETG limit.

Important questions remain unanswered. We have not
undertaken quantitative comparisons with experimental
data. Our model implies the need for careful box-size
5582
scalings and multiple species simulations to pin down the
actual predicted value of xETG

e . Finally, interactions be-
tween ETG turbulence and longer wavelength instabilities
require investigation.

We would like to thank G. W. Hammett for stimulating
and encouraging discussions. Simulations presented here
were performed at the Computing Center in Garching
and at NERSC, and were supported in part by the
Numerical Tokamak Project and by U.S. DOE Grant
No. DE-FG02-93ER54197.

*Max-Planck-Institut für Plasmaphysik, EURATOM Asso-
cation, 85748 Garching, Germany.

†Institute for Fusion Studies, The University of Texas,
Austin, Texas 78712.

[1] B. Coppi and G. Rewoldt, in Advances in Plasma Physics,
edited by A. Simon and W. B. Thompson (John Wiley and
Sons, New York, 1976), Vol. 6, p. 421.

[2] Y. C. Lee, J. Q. Dong, P. N. Guzdar, and C. S. Liu, Phys.
Fluids 30, 1331 (1987).

[3] P. N. Guzdar, C. S. Liu, J. Q. Dong, and Y. C. Lee, Phys.
Rev. Lett. 57, 2818 (1986).

[4] W. Horton, B. G. Hong, and W. M. Tang, Phys. Fluids 31,
2971 (1988).

[5] M. Kotschenreuther, W. Dorland, G. W. Hammett, and
M. A. Beer, Phys. Plasmas 2, 2381 (1995).

[6] M. Zarnstorff, Bull. Am. Phys. Soc. 43, 1635 (1999).
[7] B. W. Stallard, Phys. Plasmas 6, 1978 (1999).
[8] R. E. Waltz, G. M. Staebler, W. Dorland, M. Kotschen-

reuther, and J. A. Konings, Phys. Plasmas 4, 2482 (1997).
[9] J. F. Drake, P. N. Guzdar, and A. B. Hassam, Phys. Rev.

Lett. 61, 2205 (1988).
[10] S. C. Cowley, R. M. Kulsrud, and R. Sudan, Phys. Fluids

B 3, 2767 (1991).
[11] T. Antonsen and B. Lane, Phys. Fluids 23, 1205 (1980).
[12] E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
[13] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N.

Rogers, Phys. Plasmas 7, 1904 (2000).
[14] F. Jenko, Comput. Phys. Commun. 125, 196 (2000).
[15] M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comput.

Phys. Commun. 88, 128 (1995).
[16] M. A. Beer, S. C. Cowley, and G. W. Hammett, Phys. Plas-

mas 2, 2687 (1995).
[17] K. V. Roberts and J. B. Taylor, Phys. Fluids 8, 315 (1965).
[18] A. M. Dimits et al., Phys. Plasmas 7, 969 (2000).
[19] W. Horton et al., Phys. Fluids B 4, 953 (1992).
[20] B. N. Rogers and J. F. Drake, Phys. Rev. Lett. 79, 229

(1997).
[21] M. N. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724

(1998).
[22] B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys.

Rev. Lett. 85, 5336 (2000).
[23] W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812

(1993).
[24] F. Romanelli and S. Briguglio, Phys. Fluids B 2, 754

(1990).


