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Ponderomotive Optical Lattice for Rydberg Atoms
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We propose to use the ponderomotive energy of Rydberg electrons in standing-wave light fields to form
an optical lattice for Rydberg atoms. Application of the Born-Oppenheimer approximation shows that,
with readily achievable experimental parameters, atoms in any Rydberg state can be trapped. Realization
of this scheme would extend the benefits of atom trapping to highly excited atoms.

PACS numbers: 32.80.Pj, 32.80.Lg
Trapping cold neutral atoms in periodic potentials
known as optical lattices has been an active area of
research [1]. While atoms in an optical lattice share
some of the properties of electrons in a solid state lattice,
optical lattices provide the added benefit that all lattice
parameters —depth, lattice constants, phases, etc.—can
be arbitrarily chosen and, if needed, varied as a function
of time. This flexibility has given rise to a wide range
of applications in the fields of quantum state generation
and control [2] and quantum computation [3]. Extending
these optomechanical structures to Rydberg atoms would
substantially increase their functionality due to the large
number of Rydberg states and the potentially long deco-
herence times in these atoms. While the production of
cold Rydberg atoms has been proposed [4] and recently
achieved through the Rydberg excitation of cold ground
state atoms [5], the ability to subsequently trap the
Rydberg atoms remains elusive.

The trapping force in conventional optical lattices arises
from spatial modulations of the light shift induced by mul-
tiple interfering laser beams with a frequency near a transi-
tion between the trapped atomic ground state and another
bound excited state [1]. While optical transitions between
Rydberg states do not exist, the fact that the electron in a
Rydberg atom is nearly free suggests that a potential due
to the ponderomotive shift may be effective. The pondero-
motive shift is the time averaged kinetic energy of a free
electron in an oscillating electric field. For a field of the
form E cos�vt�, the ponderomotive (or quiver) energy is

EQ �
e2jE j2

4mev2 , (1)

where 2e and me are the electron charge and mass, re-
spectively. For standing-wave optical fields, i.e., fields
with a spatially periodic E �r�, Eq. (1) represents a peri-
odic potential from which free electrons can be diffracted
(Kapitza-Dirac effect [6]). In this paper, we propose to use
periodically modulated ponderomotive potentials to form
ponderomotive optical lattices (POLs) for Rydberg atoms.
We will show that these lattices are universal in that they
can be used to trap atoms in any Rydberg state. In par-
ticular, we focus on circular Rydberg states (l � n 2 1)
because these states have maximal radiative lifetimes and
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their insensitivity to stray electric fields makes them ideal
for high-precision spectroscopy and applications that re-
quire long quantum coherence times [7].

The motion of a Rydberg atom immersed in an opti-
cal field is described by the three coordinates r, r, and
R (shown in Fig. 1) which are chosen such that they re-
flect the three time scales of the dynamics. The large
separations between these time scales allow us to use the
Born-Oppenheimer approximation (BOA). Since the sepa-
ration in the time scales of the quiver motion (QM) and
the motion in the other coordinates is the most explicit, we
first adiabatically eliminate the QM. Thereafter, the rela-
tive motion (RM) of the electron around the ionic core
(characterized by the coordinate r) is adiabatically sepa-
rated from the center-of-mass motion (CM). We thereby
obtain a Schrödinger equation for the CM involving an
adiabatic potential that is due to the driven electronic QM.

The r coordinate describes the QM of the Rydberg
electron in the light field and has the fastest time scale
(2.8 3 1014 Hz for 1064 nm light). The relative coordi-
nate of the Rydberg electron, r, evolves on various time
scales as explained below. The fastest characteristic fre-
quency of the RM is the Kepler frequency of the Rydberg
electron, which for principal quantum numbers n � 40 is
1011 Hz. This leaves a comfortable factor of about 1000
to adiabatically separate the quiver and the orbital motion.
Further, the amplitude of the QM of the electron is much
smaller than the variation length of the atomic and external
potentials. We can thus assume that the electron is quiver-
ing in a background potential V0�R 1 r� that is constant

ρ

r
R

FIG. 1. The motion of a Rydberg atom in a laser field is char-
acterized by a slowly evolving center-of-mass coordinate R, a
relative coordinate r, and a quiver coordinate r evolving at the
laser frequency.
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on the fast time scale of the QM. The value of V0�R 1 r� can be subtracted from the Schrödinger equation of the QM,
yielding Ω

2
h̄2

2me
=2

r 1 er ? E �R 1 r� cos�vt�
æ
w�r, t; r, R� � ih̄

≠

≠t
w�r, t; r, R� (2)
for the quiver wave function w�r, t; r, R�, where r and
R refer to the quasistatic parameters of the solution. The
solutions of Eq. (2) are Volkov states [8], the energies of
which are given by the ponderomotive potential

EQ�R 1 r� �
e2jE �R 1 r�j2

4mev2 . (3)

With the adiabatic elimination of the QM we can, from
now on, account for the interaction between the Rydberg
electron and the laser field by adding a static potential
EQ�R 1 r� to the Hamiltonian of the Rydberg atom.

The typical Kepler frequency of Rydberg electrons is
of order 100 GHz, while the expected order of magnitude
of the CM oscillation frequency is 10 kHz. Therefore, at
first glance it would appear that the RM has a much faster
time scale than the CM and that, because of this, the adi-
abatic separation of the RM and CM would be straight-
forward. However, this impression is incorrect, as the RM
can exhibit slow precession frequencies as described in the
following. The high-angular-momentum states, which are
of primary interest for Rydberg atom trapping, are embed-
ded in �n2-fold-degenerate manifolds of hydrogenic states
[9]. Any external perturbation due to electric and mag-
netic fields mixes the hydrogenic states, thereby creating
energy level splittings. According to the correspondence
principle, the level splittings divided by h equal the preces-
sion frequencies of classical Rydberg electron orbits that
are caused by the perturbing external fields. These preces-
sion frequencies represent the subtle slow time scales of
the RM. To decide whether the BOA can be used in or-
der to adiabatically separate the RM and the CM, all time
scales of the RM— the Kepler period and the precession
periods —need to be considered.

Static electric and magnetic fields F and B cause Stark
and Zeeman splittings 3ea0nF�2 and mBB, respectively
(a0 is the Bohr radius and mB the Bohr magneton) [9].
Even in weak stray electric fields — about 1 mV�cm— the
Stark splitting divided by h is of the same order as the CM
oscillation frequency (10 kHz). Thus, it appears difficult
to make the BOA by having the precession frequencies
much smaller than the CM oscillation frequency. Instead,
one can make the precession frequencies much larger than
the CM oscillation frequency by applying sufficiently large
F and B fields. In the following, we first give a gen-
eral account of this strategy, and then concentrate on an
easy-to-solve example.

We assume that external static fields have been applied
such that the BOA is valid, i.e., that the CM and the RM
are adiabatically separable. If the BOA applies, the CM
coordinate R can be considered a quasistatic parameter of
the RM, yielding a RM Schrödinger equation
5552
�HF 1 EQ�R 1 r��c�r; R� � ER�R�c�r; R� , (4)

where HF is the sum of the atomic Hamiltonian and the
static-field-induced perturbations of the RM and c�r; R� is
the wave function for the RM. For the BOA to be valid, it is
sufficient that the spectrum of HF is nondegenerate and all
its level splittings are larger than the ponderomotive term in
Eq. (4). If this is not the case, the BOA and the subsequent
discussion in this paper may not apply. Fortunately, it
is quite straightforward to find static fields for which HF
fulfills the mentioned conditions.

The solution of Eq. (4) yields energies ER
j �R� and cor-

responding eigenstates of the RM coordinate, cj�r; R� (j
is a state index). The dependence of the ER

j �R� and the
cj�r; R� on the CM-coordinate R is, in general, a result of
the spatial variations of both the static fields F and B and
the ponderomotive potential Eq. (3). The ER

j �R� consti-
tute adiabatic potential surfaces that govern the dynamics
of the CM coordinate R which followsΩ

2
h̄2

2M
=2

R 1 ER
j �R�

æ
Fj�R� � EC

j Fj�R� . (5)

EC
j is the energy of the CM motion and Fj�R� is the

CM wave function for Rydberg atoms in the RM state j.
These atoms can be trapped in the POL if the wells of
the periodic potential ER

j �R� are deep enough to support
localized states.

To find ER
j �R�, we solve Eq. (4) using nondegenerate

first-order perturbation theory. The unperturbed Rydberg
wave functions c

0
j �r; R� and their energies ER0

j �R� are de-
fined by HFc

0
j �r; R� � ER0

j �R�c0
j �r; R�. The perturbed

energies ER
j �R� are then obtained as

ER
j �R� � ER0

j �R�

1
e2

4mev2

Z
d3rjE �R 1 r�j2jc0

j �r; R�j2.

(6)

A particularly transparent situation arises if HF does
not depend on R, i.e., if the static fields applied to the
atoms are homogeneous. Then, the Rydberg wave func-
tions c

0
j �r� and their energies ER0

j to be used in Eq. (6)
are the R-independent eigenenergies and eigenfunctions of
HF � H0 1 eF ? r 1 mBB ? L�h̄, where H0 is the un-
perturbed atomic Hamiltonian (the diamagnetic energy is
neglected). As one such example, we consider aligned
circular Rydberg states jn, l � n 2 1, jmj � n 2 1� in a
one-dimensional standing wave formed by two parallel lin-
early polarized, 3 mm diameter laser beams produced by a
cw YAG laser (wavelength 1064 nm) with single-beam in-
tensities 200 W�cm2 and a mutual propagation angle 2a.
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Parallel electric and magnetic fields F and B are used to lift
the degeneracies of the hydrogenic Rydberg states to en-
force the validity of the BOA. The direction of the fields
F and B serves as the quantization axis for the internal
atomic state and forms an angle u with respect to the nor-
mal of the planes of the one-dimensional (1D) POL. The
lattice normal is defined as the z axis. In parallel electric
and magnetic fields, the circular-state wave functions are
eigenfunctions of HF. The degeneracy of the hydrogenic
states is lifted as shown in Fig. 2 for the case n � 40.
Since the linear Stark shift is 3ea0nkF�2 (k � n1 2 n2,
where n1 and n2 denote the parabolic quantum numbers
[9]), the linear Stark effect does not entirely lift the de-
generacies of the hydrogenic states, but splits them into
degenerate submanifolds of states with the same k. The
circular state, which has n1 � n2 � 0, is an element of
the unshifted Stark submanifold, which contains all Ryd-
berg states with n1 � n2 [9]. Since those states differ in
the magnetic quantum number m, the residual degeneracies
can be lifted by a weak magnetic field parallel to the elec-
tric field. At the expense of larger overall Stark shifts, the
m degeneracy could also be lifted using the second-order
Stark effect [9]. To calculate the POL trapping potential
ER

j �z�, we insert the wave function of the circular states
into Eq. (6).

Figure 3a shows the effective potential ER
j �z� of circu-

lar Rydberg atoms for different principal quantum num-
bers n for u � p�2 and a � p�2. The potential depth
of h 3 20 kHz found for low n is equivalent to a tem-
perature of 2 mK, which roughly equals the lower limit of
laser cooling of Rb and Cs in optical molasses. For Ryd-
berg wave functions that do not overlap with a significant
fraction of the period of the POL, the r in the argument
of E in Eq. (6) can be dropped. The potential of the POL
then becomes identical to Eq. (1); i.e., it becomes inde-
pendent of the Rydberg state c

0
j �r� and simply mimics the

light intensity distribution of the POL. In Fig. 3, this is the
case for n , 150 and n , 40 for u � 0 and u � p�2, re-
spectively. As n is increased, the size of the Rydberg wave
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FIG. 2. Splitting scheme used to isolate n � 40 circular Ryd-
berg states and trap them in ponderomotive optical lattices. An
electric field of 0.1 V�cm separates the hydrogenic manifold into
submanifolds with a splitting of order 10 MHz. A parallel mag-
netic field of order 0.1 G removes the residual degeneracies. A
standing light wave spatially modulates the circular-state energy
with a modulation depth of about 10 kHz, creating microscopic
potential traps for the Rydberg atoms.
function becomes of the order of the lattice constant, and
the ponderomotive potential becomes partially washed out
due to the averaging specified by Eq. (6). If the spatial
extent of the Rydberg atom in the direction of the lattice
normal is of the order of an odd integer times the lattice
constant, the POL potential is reversed, as the CM coordi-
nate is attracted to maxima of jE j2 of the optical standing
wave (hatched ranges in Fig. 3). A free electron, in con-
trast, would be attracted to the minima of jE j2.

The anticipated application of POLs as traps that
suspend Rydberg atoms against gravity while they are
spectroscopically analyzed or manipulated entails several
considerations. For reasonable laser intensities, the
maximum acceleration should be ¿g (for earth-bound
experiments). To minimize the sensitivity of the trapped
atoms to common environmental vibrations of the lattice,
the CM oscillation frequency should be at least a few
kHz. A large CM frequency will also facilitate a spec-
troscopic resolution of the CM energy quantization in
the POL. The RM energy difference DE between two
Rydberg states A and B of the above Hamiltonian HF
can, in principle, be accurately determined by preparing
the atoms in the CM ground state of A and measuring
the transition frequency n to the CM ground state of B.
Then, DE � hn 1 EC

g,A 2 EC
g,B, where EC

g,A 2 EC
g,B, the

difference between the CM ground state energies of A and
B, represents a trap-induced shift. The trap-induced shift
must be minimized in order to minimize the measurement
error of DE. Further, the well-to-well tunneling rates of
the CM ground states should be smaller than the natural
decay rate. These parameters can be efficiently controlled
using the lattice geometry, as shown in Fig. 4 for the
case of n � 40 circular rubidium Rydberg atoms in a 1D
POL with u � p�2 and a varying from zero to p�2. In
the given example, a favorable compromise between a
large POL trapping force and a CM quantization structure
suitable for high-precision spectroscopy is achieved for
angles a � p�4.

FIG. 3. Trapping potential ER
j �z� created by the 1D-POL dis-

cussed in the text. (a) Potential vs position for circular states
with the indicated values of n and u � p�2. (b) Modulation
depth for circular states with u � p�2 (filled dots) and u � 0
(open dots). The lattice is reversed in the hatched ranges of
n. The insets indicate the orientation and spatial extent of the
Rydberg atoms in the lattice, where L denotes their angular mo-
mentum vector and the thin lines represent the maxima of jE j2.
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FIG. 4. CM oscillation frequency (filled squares), maximum
acceleration (open squares), and the tunneling rate (filled dots)
for n � 40 circular Rydberg atoms vs the beam angle a for
the POL explained in the text. We also show the trap-induced
frequency shift of the transition between n � 40 and n � 39
circular states trapped in the CM ground states of the POL (open
dots). In a spectroscopic experiment, the tunneling rate and the
trap-induced shift�h should not exceed the natural decay rate
(dotted line) of the involved Rydberg levels.

The ponderomotive shift is not sensitive to the tempo-
ral phases between the linear polarization components; at
a given location s it is ~jEx�s�j2 1 jEy�s�j2 1 jEz�s�j2.
Thus, a three-dimensional (3D) cubic POL can be formed
using three pairs of laser beams with mutually orthogonal
linear polarizations, without the need for stabilizing the
relative phases between the beams. An example of a 3D
cubic POL is shown in Fig. 5a. The 3D lattice does not
need to be orthogonal; in Fig. 5b an example of a skewed
lattice is shown.

In the following, we compare POLs with conventional
optical lattices [1]. The internal motion of Rydberg atoms
spans a Hilbert space much larger than that of atoms in
low-lying states. Despite this, the separation of the in-
ternal and CM dynamics based on the BOA is similar in
POLs and conventional optical lattices [10]. Because of
the jE j2 dependence of the ponderomotive shift, POLs can
be produced only by intensity gradients, not by polariza-
tion gradients. Further, in POLs the physical size of the
trapped atoms can be comparable to the lattice constant,
whereas atoms in conventional lattices appear as point ob-
jects on the length scale of the lattice. In POLs, some
trapped atoms may be lost due to photoionization. These
losses will be negligible; we estimate that in a POL formed
by two counterpropagating YAG beams (l � 1064 nm)
with 200 W�cm2 intensity low-l Rydberg states ionize
with ,1% probability per natural lifetime. For long-
lived high-l Rydberg states we have found photoionization
probabilities ,1025 (estimates are for n . 30).

In the future, POLs may be used to localize Rydberg
atoms in space, to suppress their collisions and to store
them for long periods of time. Microwave spectroscopy
on such well-prepared samples of Rydberg atoms may lead
to improved determinations of atomic parameters and the
Rydberg constant. Modulations of the POL can also be
5554
FIG. 5. Three-dimensional plots of ponderomotive potentials
EQ�R� spanning a 2 mm cube. (a) Six-beam 3D cubic lattice.
(b) Six-beam 3D skewed lattice.

used to coherently couple Rydberg states. Driven transi-
tions between Rydberg states of atoms trapped in POLs
can be made lattice-site-selective using quasistatic electric
and magnetic gradient fields that cause position-dependent
shifts of the transition frequency. Such tools may lead
to novel approaches in quantum information and compu-
tation. A POL densely occupied with circular Rydberg
atoms may display a Mott transition, thus forming a novel
metastable, dilute, light-stabilized, metallic form of mat-
ter. These are only a few examples how future research
can benefit from ponderomotive optical lattices for Ryd-
berg atoms.
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