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Non-Abelian Energy Loss at Finite Opacity
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A systematic expansion in opacity, L�l, is used to clarify the nonlinear behavior of induced gluon
radiation in quark-gluon plasmas. The inclusive differential gluon distribution is calculated up to second
order in opacity and compared to the zeroth order (factorization) limit. The opacity expansion makes it
possible to take finite kinematic constraints into account that suppress jet quenching in nuclear collisions
below RHIC (

p
s � 200 AGeV) energies.

PACS numbers: 25.75.–q, 12.38.Mh, 24.85.+p
Introduction.—The production of high transverse mo-
mentum jets in quantum chromodynamics processes is al-
ways accompanied by gluon showers. For jets produced
inside nuclei final state interactions of jet and radiated
gluons induce further radiation and also broaden the gluon
shower. The non-Abelian radiative energy loss in a me-
dium is expected to be observable as “jet quenching.” The
detectable consequences in nuclear collisions should be
seen as a suppression of the high p� tails of single hadron
distributions [1,2] and a broadening of the jet cone [3].

Non-Abelian energy loss in perturbative quantum chro-
modynamics can be calculated analytically in two limits.
In both cases, the energy of the leading parton is assumed
to be large enough that its angular deflection can be ne-
glected. One analytic limit applies to thin plasmas where
the mean number, n̄ � L�l, of jet scatterings is small
[4,5]. The other limit is the thick plasma one [6–9], where
n̄ ¿ 1. This mean number, n̄, is a measure of the opacity
or geometrical thickness of the medium:

n̄ �
Nsel

A�

�
Z
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dN
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2pR2
G

log
RG

t0
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For a constant (box) density r � N�LA�, L is the
target thickness and l � 1�selr is the average
mean free path. For a sharp cylinder geometry we
can interpret L � 1.2A1�3 � Rs as the nuclear ra-
dius. For a more realistic 3 1 1D expanding Gauss-
ian cylinder with r�x�, t� � �t0�t�r0 exp�2�x2

� 1

Dt2��R2
G�I0�2jx�jDt�R2

G�, L is replaced by the equiva-
lent rms Gaussian transverse radius RG � 0.75A1�3 fm.
The rightmost form in (1) is obtained by averaging over
the expanding Gaussian cylinder. Here t0 is the formation
time of the plasma and r0 � r�0�, t0� is the initial
central density.

At relativistic heavy ion collider (RHIC) energies (
p

s �
200 AGeV) the expected rapidity density of the gluons is
dN�dy � 1000 for A � 200. With an elastic cross section
sel � 2 mb and a plasma formation time �0.5 fm�c, we
obtain n̄ � 4. This suggests that neither analytic approach
may be strictly applicable in practice. However, because
0031-9007�00�85(26)�5535(4)$15.00
of the non-Abelian analog [4,6,8] of the Landau-
Pomeranchuk-Migdal (LPM) effect, the radiation intensity
angular distribution and total energy loss are controlled by
the combined effect of the number of scatterings n̄ � L�l

and a formation probability pf � L�lf � Lm2�2xE of
the gluon in the medium. In [6,8] the induced energy
loss was shown to be nonlinear in the nuclear thickness,
DE ~ m2L2�l assuming the n̄ ¿ 1 limit. In [5], we
showed that the angular pattern was even more strongly
nonlinear in the exclusive (tagged target) case. We show
below that, in the inclusive case in the small x limit,
important features of the radiation pattern are in fact
governed by the product n̄pf � L2m2�2xEl. Because of
this, even the first order in opacity reproduces the L2 de-
pendence of the energy loss and the range of applicability
of the finite opacity expansion derived below may extend
to realistic targets. The modifications to the results in the
x ! 1 regime are also discussed below based on Ref. [7].

Another important motivation for our approach is the
apparent absence of jet quenching observed at SPS en-
ergies [10,11]. As we find below, the opacity expansion
shows that finite kinematic constraints suppress greatly
the non-Abelian energy loss at SPS energies. The work
reported in this Letter extends Ref. [5] by including vir-
tual corrections [7] necessary to compute inclusive (vs
tagged) jet quenching. This provides a natural unitariz-
ing procedure with detailed derivation of the results given
in Ref. [12].

Hard gluon distribution.—At zeroth order in opacity,
the gluon emission from the hard production vertex with
momenta of jet and gluon in light-cone coordinates [5,12]
p � ��1 2 x�E1, p2, p��, k � �xE1, k2, k�� is given in
the leading pole approximation (LPA) by

x
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dx dk2
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, (2)

where x � k1�E1 � v�E, and CR is the Casimir of the
(spin 1�2) jet in the dR dimensional color representation.
For a spin 1 jet the gluon splitting function must be sub-
stituted above. The differential energy distribution outside
a cone defined by k2

� . m2 is given by
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where the upper kinematic limit is

k2
� max � min�4E2x2, 4E2x�1 2 x�� . (4)

The energy loss outside the cone is then given by

DE�0� �
4CRas

3p
E log

E
m

(5)

in the leading log�E�m� approximation. While this
overestimates the radiative energy loss in the vacuum
(self-quenching), it is important to note that DE�0��E �
50% is typically much larger than the medium induced
energy loss.

Opacity expansion.—To compute the induced radiation,
we assume as in [4,5] that the quark gluon plasma can
be modeled by N well-separated, i.e., l ¿ 1�m, color-
screened Yukawa potentials. In contrast to [5], we con-
sider here the inclusive gluon distribution induced by a
finite medium which remains unobserved. Without tar-
get tagging, we must add double Born (virtual) amplitudes
[12] to the real (direct) amplitudes derived in [5]. We de-
note by G0 the basic eikonal hard emission amplitude in
the x ø 1 regime

G0 � 22igse� ? Heiv0z0c , (6)

where we use the shorthand notation of [5], H � k��k2
�,

v0 � k2
��2xE. The hard parton originates at z0, and c

denotes the color matrix Tc in its dR dimensional represen-
tation. In Ref. [12] we developed an iterative procedure to
generate from this amplitude the sum of all amplitudes in
the small x limit to any order in opacity including both
direct and virtual terms.
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To first order in opacity cross section for the induced
radiation consists of 32 real and 2 3 4 double Born con-
tributions that sum to a simple result

P�1� ~ CRCAdR	�22C1 ? B1� �1 2 cos�v1Dz1��
 , (7)

where Cm and vm are obtained from H and v0 through
the substitution k� ) k� 2 q�m. Here q�m is the mo-
mentum transfer at location zm. The shorthand Bm �
H 2 Cm and Dzm � zm 2 zm21 [5,12]. Note that the in-
teraction of the radiated gluon in the medium brings in
a factor CA � Nc. Unlike the tagged case [5], the above
first order correction to the hard (factorization) distribution
in Eq. (2) has no simple classical cascade interpretation.
In the tagged case, the result contained terms with color
factors C2

RdR as well as CRCAdR that were easily inter-
pretable in terms of jet rescattering and induced radiation.
In the inclusive case, the unitarity corrections lead to long
range nonlocal color interference effects that result in a
remarkable “color triviality” property [13]. In fact all jet
rescattering effects cancel [6,7]. As derived in Ref. [12],
the color factor at order n is simply CRCn

AdR , in contrast to
the vastly more complicated color structure of the tagged
case [5].

The non-Abelian LPM effect is seen in Eq. (7) as arising
from the gluon formation factor

F�Dz1� � 1 2 cos�v1Dz1� . (8)

This must also be averaged over the longitudinal target pro-
file, n�z�. For a box density [6] of thickness L � 1.2A1�3,
n � u�L 2 z��L. For analytic simplicity we take instead
an exponential form ne�z� � e2z�Le �Le. In order to com-
pare results for the two cases, we must require identical
mean target depths, i.e., Le � L�2. With ne�z� the en-
semble averaged formation factor is
Z `

0

2dDz1

L
e2�2Dz1�L�F�Dz1� �

�k 2 q1�4
�L2

16x2E2 1 �k 2 q1�4
�L2

. (9)
The formation probability in this case is controlled by
simple Lorentzian factors. [Note that for x ! 1 one should
include above a modification of the energy difference, v1,
that leads to x ! x�1 2 x� [7].]

Averaging over the momentum transfer q1� via the color
Yukawa potential leads finally to the x ø 1 gluon double
differential distribution
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where the opacity factor L�lg � Ns
�g�
el �A� arises from

the sum over the N distinct targets. Note that the radiated
gluon mean free path lg � �CA�CR�l appears rather than
the jet mean free path. It is the color triviality of Eq. (7)
that allows us to absorb CR factor into the hard distribution,
Eq. (2), and CA factor into lg.

The upper kinematic bound on the momentum
transfer q2

max � s�4 � 3Em, �1�m
2
eff � 1�m2 2

1��m2 1 q2
max��. For SPS and RHIC energies, this

finite limit cannot be ignored as we show below.
The second order contribution in opacity requires a more

complex calculation involving the sum of 72 direct and
2 3 86 virtual terms as discussed in [12]
P�2� ~ CRC2
AdR	2C1 ? B1�1 2 cos�v1Dz1�� 1 2C2 ? B2	cos�v2Dz2� 2 cos�v2�Dz1 1 Dz2��

2 2C�12� ? B2�cos�v2Dz2� 2 cos�v�12�Dz1 1 v2Dz2�� 2 2C�12� ? B2�12��1 2 cos�v�12�Dz1��
 , (11)

where with C�mn� and v�mn� obtained from H and v0 through the substitution k� ) k� 2 q�m 2 q�n and Bm�nl� �
Cm 2 C�nl� [5,12]. Both probabilities Eqs. (7) and (11), actually hold for either quark or gluon jets in the small x
approximation.
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The general closed form expression for P�n� for arbitrary
n is derived in Ref. [12]. We note that in the two important
limits jk�j ! 0 and jk�j ! ` the induced radiation at
any order is negligible relative to dN �0� for any fixed x
due to the singular k� dependence of dN �0� and azimuthal
angular averaging. This is clearly seen in Fig. 1 up to
second order.

The average over the scattering points, z1, z2 in the sec-
ond order case is performed with the exponential density
profile as follows:

�· · · �
Z `

0

3dDz1

L

Z `

0

3dDz2

L
e2 3�Dz11Dz2 �

L · · · . (12)

We must use Le � L��n 1 1� for nth order in opacity in
order to ensure that the first moment of the mth scattering
center is identical to that in a box distribution ��zmn �
mL��n 1 1��) as discussed in [5].

Numerical results comparing the first and second order
in opacity corrections to the hard distribution Eq. (2) are
illustrated in Figs. 1 and 2.

We consider a 50 GeV quark jet in a medium with lg �
1 fm. A screening scale m � 0.5 GeV and as � 0.3 were
assumed. The “angular” distribution in Fig. 1 shows that
the first order angular distribution is wider than the medium
independent hard 1�k2

� distribution. The second order cor-
rections redistribute the gluons further. In Fig. 2 the k�

integrated contributions to the gluon intensity, dI�dx, are
shown for the same conditions as in Fig. 1 extrapolated to
x � 0.5. Note that for x . 0.5 the 1��1 2 x� dependence
leads to additional contributions from the x ! 1 region
[see Eq. (15) and also [7] ]. The induced intensity is con-
centrated at small x in contrast to the relatively constant
intensity originating from the hard “self-quenching” term
(3). The long 1�x tail contributes, however, a logarithmic
factor log�E�m� as we discuss further below. The second

FIG. 1. The medium induced gluon differential multiplicity
normalized by the factorization distribution Eq. (2) is plotted
vs k2

��m2 for opacity L�lg � 1, 2, 3. Solid curves show first
order (10) and dashed including second order in opacity (11)
for a gluon with x � 0.2. (Quark jet of Ejet � 50 GeV and
m � 0.5 GeV.)
order correction suppresses the intensity at small x and en-
hances it somewhat at higher x $ 0.2. We note that these
two effects tend to cancel in the integrated energy loss as
seen in Fig. 3.

Radiation intensity and energy loss.—To gain analytic
insight into the above numerical results, we consider the
first order induced radiation intensity dI �1��dx in the ap-
proximation that k2

� max � `. This allows us to change
variables q0

� � k� 2 q1� in Eq. (10) and express the in-
tegrand in the azimuthal f integral as a partial derivative
with respect to k2

�. The remaining q02
��m2 integral (cutoff

at 1�d , `) can be performed then analytically, resulting
in
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where g � Lm2�4x�1 2 x�E is the effective formation
probability including the �1 2 x� modification expected
in the x ! 1 limit [7]. The formation function in this
approximation is given by

f�g, d� �
g�2 tan21 g

d 1 g log g21d2

�11d�2 �
�1 1 g2�

, (14)

which in the d ! 0 and g ø 1 limit reduces to a simple
form f�g, 0� � pg ~ L. This special limit leads to a
quadratic dependence on L:

dI �1�

dx
�

CRas

4

1 2 x 1
x2

2

x�1 2 x�
L2m2

lg
. (15)

This formula breaks down at both x ! 0 and x ! 1 be-
cause jk�jmax cannot be approximated by `.

The total radiative energy loss is then given by

DE�1� �
CRas

N�E�
L2m2

lg
log

E
m

, (16)

with N�`� � 4 if the kinematic bounds are ignored as
in Eq. (15). In practice, we emphasize that finite kine-
matic constraints cause N�E� to deviate considerably from
the asymptotic value 4. We find that N�E� � 7.3, 10.1,
24.4 for E � 500, 50, 5 GeV if the �1 2 x� factor is ne-
glected. The large x contributions typically decrease N�E�

FIG. 2. The contributions to the induced radiation intensity to
first and second order in opacity are compared to Eq. (3).
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FIG. 3. The radiated energy loss of a quark jet with energy
Ejet � 5, 50, 500 GeV (at SPS, RHIC, LHC) is plotted as
a function of the opacity L�lg. (lg � 1 fm, m � 0.5 GeV.)
Solid curves show first order, while dashed curves show results
up to second order in opacity. The energy loss (solid triangles)
from Refs. [3,7] (with ỹ � 2.5) is shown for comparison.

by 10%–30%, e.g., N�`� � 8�3 vs 4. Together with the
logarithmic dependence on energy, these kinematic effects
suppress greatly the energy loss at lower (SPS) energies
as seen in Fig. 3. This is in contrast to the approximately
energy independent result in Ref. [6] where the finite kine-
matic bounds were neglected. We note that the result of
[6–8] should not be compared to the lower (SPS) en-
ergy since the E . Ecr � L2m2�l condition is violated
at L . 2 fm for 5 GeV jets.

Conclusions.—We calculated the effect of final state in-
teractions on the induced gluon differential distribution up
to second order in opacity for hard jets produced in nu-
clear reactions. This work generalizes Ref. [5] by taking
into account virtual corrections to calculate inclusive rates
and provides a complementary analytic approach to clarify
nonlinear jet quenching effects predicted in Refs. [3,6–8].
The inclusive xdN�dxdk2

�, dI�dx, and DE, were studied
as a function of nuclear thickness for jet energies in the
SPS, RHIC, and LHC range. One of our main results is
the demonstration that the second order contribution (11)
to the integrated energy loss remains surprisingly small up
to realistic nuclear opacities L�lg � 5 (except at low SPS
energies). The rapid convergence of the opacity expansion
even for realistic opacities results from the fact that the ef-
fective expansion parameter is actually the product of the
opacity and the gluon formation probability Lm2�2xE [see
(14)]. The leading quadratic dependence of the energy loss
on nuclear thickness therefore arises from the simple first
order term (7) in this approach. The detailed pattern of an-
gular broadening and the x dependence is also dominated
by the first order contribution. We note that our first order
(effectively power-law) jk�j and x distributions, however,
differ considerably from the Gaussian form obtained in the
eikonal resummation approach of [3,6] that applies to thick
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targets. Surprisingly, on the other hand, the magnitude of
the integrated DE�L� is rather similar at RHIC energies.

At SPS energies kinematic effects suppress greatly the
energy loss relative to [6]. Our estimates provide a natural
explanation for the absence of jet quenching in Pb 1 Pb at
160 AGeV that has been a puzzle up to now [10,11]. The
short duration of the dense phase further limits the effective
opacity at the SPS. A duration of L�lg � 2, for example,
leads to a total energy loss of only �100 MeV, which is
much too small to be observable in soft multiple scattering
background [11]. At RHIC energies, on the other hand,
a significant nonlinear (in A) pattern of suppression [1,2]
of high p� hadrons relative to scaled pp data should be
observable to enable a direct test of non-Abelian energy
loss mechanisms in dense matter. We note finally that
the simplicity of the first and second order results (7),(11)
will make it possible to improve significantly Monte Carlo
event simulations of jet quenching [2].
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the DOE Research Grant under Contract No. De-FG-02-
93ER-40764, partly by the U.S.-Hungarian Joint Fund
No. 652 and OTKA No. T029158.

Note added.—An independent opacity expansion also
recently appeared in [14]. We have checked that up to
second order our results coincide for the box geometry as-
sumed there. Unlike the implicit integral relations derived
in [14], our algebraic (reaction operator) derivation in [12]
leads to compact analytic expressions for P�n�.
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