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Noncommutative D-Brane in a Nonconstant NS-NS B Field Background
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We show that, when the field strength H of the NS-NS B field does not vanish, the coordinates x and
momenta p of open string end points satisfy a set of mixed commutation relations among themselves.
Identifying x and p with the coordinates and derivatives of the D-brane world volume, we find a new
type of noncommutative space which is very different from those associated with a constant B field
background.
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(1) Introduction.— In search of the final theory, the
quantum theory of gravity has been the most outstand-
ing problem. In particular, one expects a frenetic, fuzzy
structure of spacetime at the Planck scale, where the clas-
sical notion of geometry breaks down. As a realization of
this fuzziness of spacetime, noncommutative geometry has
been conjectured to underlie many mysterious features of
quantum gravity, and thus provide a physical regularization
for ordinary quantum field theories. This hope has moti-
vated studies of quantum spacetime since 1946 by Snyder
[1] and Yang [2].

In the past few years there has been a growth in inter-
est in noncommutative geometry, which appears in string
theory in several different ways. To our knowledge the
first paper on this topic is [3]. For an earlier focus on the
use of noncommutative geometry in matrix theory com-
pactifications, see, for instance, Ref. [4]. In this paper we
follow [5,6] and find new types of noncommutative spaces
which appear naturally in string theory as a description of
the D-brane world volume.

In [7,8], it was proposed that the matrix theory com-
pactified on a torus with constant three-form C field back-
ground should be described by a field theory living on a
noncommutative space whose coordinates satisfy a non-
commutative algebra of the form

�xi , xj� � iuij , (1)

where uij � RC2ij and R is the light cone radius of X2.
As evidence, the Bogomolnyi-Prasad-Sommerfield spec-
trum on the quantum torus was given in [9,10], and this
conjecture was later derived [11] from the discrete light
cone quantization of the membrane action. Via string du-
alities, it follows that, in the background of a constant
Neveu-Schwarz–Neveu-Schwarz (NS-NS) B field, the low
energy field theory of a flat D-brane in flat spacetime lives
on a noncommutative space described by (1), where

uij � 22pa0�G21BM21�ij , (2)

Mij � Gij 2 BikGklBlj , (3)

where Gij is the spacetime metric viewed by closed strings.
Here we assumed that the U(1) field strength F � dA van-
ishes. In general, since F � B 2 F is the gauge invariant
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quantity, it is natural to replace B by F in (2). (For the re-
lation between different noncommutativity due to different
choices of background values, see [13].) The simplest way
to derive this result is to quantize an open string ending on
the D-brane [5,6,12]. This serves as direct evidence for the
noncommutativity of D-brane world volume in the B field
background. Later it was shown [14,15] that, for the sake
of deriving end point commutation relations, it is sufficient
to approximate the open string by a straight line stretched
between its end points. This is equivalent to saying that we
quantize the open string in the low energy limit �a0 ! 0�.
Other approaches for calculating the D-brane world vol-
ume noncommutativity can be found in, e.g., [16–18].

In this paper we consider the more general case of a
curved D-brane in a curved spacetime with a nonconstant
B field. Obviously, Eq. (2) will not continue to hold, be-
cause Eq. (1) may no longer satisfy the Jacobi identities.
We will show that in the generic case u will be replaced
by a function depending not only on the coordinates x but
also on the derivatives ≠. The D-brane world volume thus
belongs to a new type of noncommutative spaces which is
described by a mixed algebra of x and ≠.

(2) Generic case.—The bosonic part of the action for
an open string ending on a D-brane in the background of
a NS-NS B field is

SB �
Z

dt L �
1

4pa0

Z
d2s �habGmn≠aXm≠bXn

1 eabFij≠aXi≠bXj� ,
(4)

where hab � diag�1, 21�, and e01 � 2e10 � 1. (We
have absorbed the dilaton factor in Gmn and Fij .) We use
Xi and Xa to denote longitudinal and transverse directions
for the D-brane, respectively, and use Xm for all space-
time directions. For simplicity we assume that Fam � 0,
Gia � 0, and Fij is invertible.

The conjugate momentum of Xm is

Pm �
1

2pa0
�Gmn

�Xn 1 FmiX
0i� , (5)

and the boundary conditions are

GijX
0j 1 Fij

�Xj � 0, �Xa � 0 . (6)
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In the limit a0 ! 0, the oscillation modes can be ig-
nored since their energies are proportional to 1�a0. The
bulk of the string is now determined by its boundary. In
principle, one can try to solve the wave equations for Xm

and pick out the lowest energy mode which survives the
limit a0 ! 0. Here we avoid the complexity by focusing
on the low energy limit in which both �X and X 0 are very
small. This means that the string is very short and moves
very slowly, so that the spacetime appears to be almost flat
and F is almost constant. Therefore we can use the results
in [5] for a flat background and see that Eq. (6) holds for all
s for the lowest energy mode. It follows that Pa � 0 and

Pi �
1

2pa0
�Fil 2 GijF

jkGkl�X 0l , (7)

where F ij is the inverse matrix of Fij .
Since Pa vanishes, Xa will be just constant for the whole

string, and so we will ignore them from now on. Let

F̂ �
1

2pa0
�F 2 GF 21G� ; (8)

then a shorthand of (7) is

P � F̂ X 0. (9)

The symplectic two-form which determines the commu-
tation relations among X and P is

V �
Z

ds �dXidPi� . (10)

By using (9), and the identity dF � 0, we find

V �
1
2

�dXT F̂ dX�s�p
s�0

2
1
2

Z
ds ĤijkX 0idXjdXk , (11)

where Ĥijk � ≠iF̂jk 1 ≠jF̂ki 1 ≠kF̂ij . Note that in the
large B limit Ĥ is just �1�2pa0� times H � dB induced
on the D-brane.

(3) Ĥ � 0 and fuzzy sphere.—While Ĥ may be non-
trivial in spacetime, as long as its projection onto the
D-brane vanishes, the second term in (11) vanishes, and
the Poisson bracket �?, ?� for the end points of the open
string at s � 0 is

�Xi , Xj� � 2pa0iuij , (12)

where u � F̂ 21. The relation for the other end point
differs only by a sign.

To quantize this system we need to replace the Poisson
brackets �?, ?� by commutators �?, ?�, but it requires some
operator ordering such that the Jacobi identity is satisfied.
We will only be concerned with the Poisson bracket in this
paper.

An example is provided by the spherical D2-brane in S3,
where the metric of S3 is

ds2 � ka0�dc2 1 sin2c�du2 1 sin2udf2�� , (13)
5524
and the field strength for the two-form NS-NS B field is

H � dB � 2ka0 sin2c sinudcdudf , (14)

where k is an integer related to the radius of S3 by R �p
ka0. For this H, we can choose B to be proportional to

the volume form of the two-sphere parametrized by �u, f�
on which the D2-brane wraps:

B � ka0

µ
c 2

sin2c

2

∂
sinududf . (15)

The one-form field strength on the D2-brane should be
[19,20]

F � dA � pa0n sinududf . (16)

The energy of the D2-brane is locally minimized at

c �
pn
k

(17)

for arbitrary integer 0 , n , k [19–21]. At those places,

F � B 2 F � 2ka0

µ
sin2c

2

∂
sinududf . (18)

The resulting Poisson bracket is thus

�cosu, f� � 2
2p

k
cosc
sinc

, (19)

which implies that the Cartesian coordinates satisfy the
algebra of the fuzzy sphere [22],

�xi , xj� �
2p

k
cosc
sinc

eijkxk , (20)

where

x1 � sinu cosf, x2 � sinu sinf, x3 � cosu .
(21)

In the large k limit, c ø 1, it is �xi , xj� � 2
n eijkxk . This is

in agreement with [18,23]. For discussions on noncommu-
tative gauge theories on fuzzy spheres, see, e.g., [24–27].

The reason why this approximation works is that from
the flat space results we see that the length of the open
string is related to its momentum. In the low energy limit,
the momentum is very small and so the open string is very
short, and it sees only a very small portion of the sphere,
which looks almost flat. This also explains why the
result of the commutation relation should be formally
the same as the flat case. The first main result of this
paper is that the same expressions for noncommutativity
[Eqs. (1) and (2)] continue to work as long as Ĥijk

vanishes. For the formulation of a noncommutative gauge
theory on a generic Poisson manifold, see Refs. [28,29].

(4) Ĥ fi 0 and new type of noncommutative spaces.—
What happens if Ĥijk is not zero? An approximate re-
sult for small F and slow variations of F and g were
obtained in [30]. There the Jacobi identity for the algebra
of X and P was checked to hold within the validity of this
approximation. In the following we will give a very simi-
lar derivation, but arriving at a consistent algebra which is
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valid in the low energy limit of open strings. Our task is
to find the Poisson brackets among X and P at s � 0 for
the case Ĥ � const, such that the Poisson brackets satisfy
Jacobi identity to all orders, and reduces to the previous
result (1) when Ĥ � 0.

We will simplify the derivation by assuming that X is
linearly dependent on s. This statement is not well defined
with respect to general coordinate transformations, so the
results we obtain are exactly correct only up to the first
order in X 0 or P, such as in a low energy approximation.
By assumption, X 0 is independent of s and

X�s� � x 1 sX 0, (22)

where x is the coordinate of the end point of the string at
s � 0. In our convention, s [ �0, p�. The momentum
at s � 0 is

p � P�s � 0� � F̂ �x�X 0. (23)

From (11), assuming that ≠kF̂ij � const so that Ĥijk �
const, the symplectic two-form is
V �
p

2
�≠kF̂ij 2 Ĥijk�X 0kdxidxj 1

p

2

∑
F̂ij 1 p

µ
≠kF̂ij 2

1
2

Ĥijk

∂
X 0k

∏
�dxidX 0j 2 dxjdX 0i�

1
p2

2

∑
F̂ij 1 p

µ
≠kF̂ij 2

1
3

Ĥijk

∂
X 0k

∏
dX 0idX 0j , (24)
where F̂ij � F̂ij�x�. It can be explicitly checked that
the symplectic two-form is closed, so that its inverse, the
Poisson bracket, satisfies the Jacobi identity. By inverting
V, we obtain the Poisson brackets for �x, x�, �x, X 0�, and
�X 0, X 0�. To find �x, p� and �p, p� from these, we use (23).

Since it is straightforward but cumbersome to write the
final answer to all of the Poisson brackets among x and
p, we will write only the one involving x for the special
case ≠iF̂jk � Ĥijk�3, that is, F̂ij�x� � F̂

�0�
ij 1

1
3Ĥijkxk ,

where F̂
�0�

ij are constant. The result is

�xi , xj� � 22��I 1 A�22F̂ 21�ij , (25)

where I stands for the identity matrix and

Ai
j �

p

6
F̂ 21ikĤkjmF̂

21mnpn . (26)

When F̂ �0� is much larger than Ĥ, (25) is approximately

�xi , xj� � 22

∑
d

i
l 2

p

3
F̂ 21ikĤklmF̂

21mnpn

∏
F̂ 21lj .

(27)

The commutation relation for the coordinates at the other
end point of the open string at s � p is the same, except
for a difference in sign, as it should be [5]. These expres-
sions show that, after quantization, the commutator of x
with x will in general be a function of x and p.

It follows that the low energy D-brane field theory
lives on a noncommutative space. Identifying x and
p with the coordinates and derivatives on the D-brane,
the commutation relations among x and p define the
differential calculus on its noncommutative world volume.
The novel property that comes in when Ĥ fi 0 is that the
commutator �xi , xj� is given by a function of x and p, that
is, a pseudodifferential operator on the noncommutative
space. Similarly, the commutator of �x, p� and �p, p�
is also given by functions of x and p, rather than just a
function of x. These types of noncommutative spaces
were not considered in the context of string theory in the
recent past, but were considered a long time ago [1,2].
[The motivation of Refs. [1,2] to consider noncommu-
tative spaces was to regularize ordinary quantum field
theories. In order to have Lorentz invariance, mixing of
coordinates and momenta is needed. For instance, they
have �xi , xj� � ia2��xi , pj	 2 �xj , pi	�.] Recently, in
[31–33], similar noncommutative spaces (fuzzy S4) were
considered in matrix model and M theory.

More care is needed to define a field theory on such
noncommutative spaces. Since the commutator of two
spacetime coordinates generates a derivative, how do we
distinguish a function of x only from a function of both x
and ≠�≠x on the noncommutative space? This problem
can be solved by requiring that a function of x be written
in terms of totally symmetrized products of the x’s. How-
ever, it is not clear how to define a gauge theory, since
the gauge transformation of a field, which is a function of
x, will generically become a pseudodifferential operator.
Perhaps the generalization of gauge theories to such non-
commutative spaces demands a deeper understanding of
gauge symmetry. On the other hand, despite this difficulty
in defining a noncommutative gauge theory, we should not
be surprised that these types of noncommutative spaces
appear in string theory, since, in string theory, operators
which are identified with coordinates or momenta may be
reinterpreted as other physical quantities in a dual theory.

From (23) and (24), one can also find �xi , pj� as an
expansion of momentum. Following the lines of [30], it
may be possible to derive an uncertainty relation in the
absence of background fields of the form DxDp $ 1

2 1
a2

2 DpDp 1 . . . , due to quantum fluctuations. These types
of uncertainty relations were known to result in a mini-
mal length Dx $ a, which cannot be obtained for ordinary
noncommutative spaces. This possibility suggests that the
mixing of x and p may play an essential role in the non-
commutative structure of spacetime at the Planck scale.
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The approach used in this paper should work even for
cases in which Ĥ is not constant, although it will be more
difficult to obtain generic expressions for the symplectic
form unless more details about Ĥ are specified.

An open membrane ending on an M5-brane in the back-
ground of a three-form C field with constant field strength
was studied in [34] in a limit in which the boundary of
the open membrane— a closed string— gives a noncom-
mutative loop algebra on the 5-brane world volume. This
can also be interpreted as the noncommutativity felt by a
fundamental closed string in the background of a constant
H field. It would be interesting to see the connection be-
tween the noncommutativities from the open and closed
string points of view.
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