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Is Equilibrium of Aligned Kerr Black Holes Possible?
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We show that equilibrium of two Kerr black holes can be achieved by placing between them a relativis-
tic disk or a third Kerr black hole, the latter case demonstrating the existence of equilibrium configurations
in the purely black hole systems with the number of constituents more than two.
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A thorough analysis of the famous double-Kerr solution
of Kramer and Neugebauer [1] leads to the conclusion,
rigorously proved in the equatorially symmetric case and
extensively supported by a numerical study in the general
case [2], that two Kerr black holes cannot be in equilibrium
due to the balance of the gravitational attraction and spin-
spin repulsion forces.

A natural question arises: Is it possible to achieve
equilibrium of two stationary black holes by introducing
a third component? Although no attempt has yet been
done to solve any concrete equilibrium three-body problem
involving normal black holes, apparently because of the
complexity of the corresponding balance equations, the
mathematically equivalent exact solutions of Einstein’s
equations are known [3] which can describe an axisym-
metric system of N aligned Kerr black holes. In this Letter
we use the analytically extended version of the 2N-soliton
solution [4] whose very concise analytic form will enable
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us to demonstrate that two normal Kerr black hole con-
stituents can be equilibrated by placing between them a
superextreme object (relativistic disk) or, most unexpect-
edly, a third black hole constituent, the latter case repre-
senting a purely gravitational balance of three stationary
black holes with positive individual masses.

For our specific three-body problem we make use of a
six-soliton specialization of the solution [4] whose defining
Ernst complex potential E [5] and corresponding metric
functions f, g, and v from the axisymmetric line element

ds2 � f21�e2g�dr2 1 dz2� 1 r2dw2� 2 f�dt 2 vdw�2,

(1)

r, z, w, t being the Weyl-Papapetrou cylindrical coordi-
nates and time, have the form (a bar over a symbol denotes
complex conjugation; throughout the paper units are used
in which the speed of light c and the gravitational constant
G are equal to unity)
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Formulas (2) involve the parameters bl , l � 1, 2, 3, which
can assume arbitrary complex values, and the parameters
an, n � 1, . . . , 6, which can assume arbitrary real values
or occur in complex conjugate pairs; they permit a simul-
taneous treatment of the subextreme (black hole) and su-
perextreme (relativistic disk) cases.

For simplicity we consider the equatorially symmetric
three-body problem defined, as can be readily demon-
strated using the results of Ref. [4], by the following re-
strictions on the parameters an and bl :

a4 � 2a3, a5 � 2a2, a6 � 2a1 ,

X1X6 � X2X5 � X3X4 � 21 . (3)

The two cases of interest are shown in Fig. 1 where the
segments a2 , jzj , a1 are Killing horizons of two iden-
tical Kerr black holes, and the cut joining the points a3 and
2a3 in Fig. 1A defines a superextreme Kerr constituent (a
relativistic disk), while the segment jzj , a3 in Fig. 1B is
the horizon of the third Kerr black hole.
By construction, the solution (2)–(3) is asymptotically
flat which means that the metric functions g and v are
zeros on the part jzj . a1 of the symmetry axis. There-
fore, in view of the additional symmetry of our three-body
systems with respect to the equatorial (z � 0) plane we
should demand only

g�r � 0, Rea3 , z , a2� � 0 ,

v�r � 0, Rea3 , z , a2� � 0
(4)

to assure the equilibrium of all the constituents due to
the balance of the gravitational attraction and spin-spin
repulsion forces [6,7]. Since in all the formulas (2) one
can use the constant objects Xn, n � 1, . . . , 6, instead of
the parameters bl , l � 1, 2, 3, the system (4) can be solved
numerically by assigning particular values to a1, a2, a3,
X1 and finding the respective values of X2 and X3 [X4, X5,
X6, as well as a4, a5, a6 are defined by (3)]. The explicit
form of the system (4) is this:
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Aij :� ai 2 aj , Bij :� ai 1 aj ,

and below we give two particular solutions of the balance equations together with the corresponding individual masses
Mi and angular momenta Ji , i � 1, 2, 3, of the constituents (the subindex 2 denotes the intermediate object) which have
been calculated via Komar integrals [8] using Tomimatsu’s formulas [9].

(A) An equilibrium of two black holes and a relativistic disk.—

a1 � 4, a2 � 3.5, a3 � 26i, X1 � 0.6 1 0.8i ,

X2 � 0.849 2 0.528i, X3 � 0.109i , (6)

M1 � M3 � 0.348, M2 � 1.176, J1 � J3 � 20.116, J2 � 8.267

(the numerical values are given up to three decimal places).
(B) An equilibrium of three Kerr black holes.—

a1 � 5, a2 � 2, a3 � 1, X1 � 0.92 2 0.392i ,

X2 � 0.769 2 0.639i, X3 � 0.699 2 0.715i , (7)

M1 � M3 � 3.533, M2 � 1.813, J1 � J3 � 70.66, J2 � 2128.784 .
A peculiar feature of both equilibrium states is that the
intermediate object is counterrotating to the two identical
black hole constituents although there are examples when
it is corotating. One could also observe that, whereas the
black hole constituents in the equilibrium position (6) are
“normal” black holes in the sense that they satisfy the in-
equality J2

1,3�M4
1,3 , 1 valid for a single Kerr black hole
[10], it is tempting to view the black holes in the equilib-
rium position (7) as superextreme objects because of the
inequality J2

i �M4
i . 1 they fulfil. As a matter of fact, it

is known [11] that already in a binary system of identi-
cal Kerr black holes the total angular momentum per unit
mass can exceed considerably the total mass. Hence, in the
multiblack hole solutions the ratio between the mass and
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FIG. 1. Equatorially symmetric three-body systems composed
(A) of two identical black holes and a relativistic disk and (B)
of three black hole constituents, the upper and lower ones being
identical.

angular momentum does not work as the absolute charac-
teristic of the black hole state. What really matters is the
presence of the horizons defined by real-valued parameters
an (a pair of complex conjugate as defines a superextreme
object).

In Fig. 2 we have plotted the stationary limit surfaces
for the above two equilibrium configurations. The case in-
volving a superextreme object (Fig. 2A) does not have ring
singularities, while the equilibrium configuration of three
black holes possesses one ring singularity in the equatorial
plane (Fig. 2B). The singularity is massless and its origin
is most likely due to the rupture of the stationary limit sur-
face of the middle black hole caused by a big value of the
angular momentum. It is anticipated that the singularity
has a “benign character,” using Wald’s wording [12], un-
like the one discussed in the first paper of Ref. [2] where
it accompanied a constituent with negative Komar mass.
In any case, one might expect new physics inherent to the
multiblack hole systems since no analogous equilibrium
configuration of two Kerr black holes with positive Komar
masses and a ring singularity is known.

Therefore, we can speak about a reliable mechanism of
achieving equilibrium of two black holes by placing a third
object between them. Remarkably, the latter can be a black
hole constituent, giving rise to the multiblack hole equi-
librium configurations. The fact that purely black hole
equilibrium states do not appear in binary systems and
do appear in three-body systems is probably explained by
the existence of a minimal set of the parameters deter-
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FIG. 2. Stationary limit surfaces plotted in the r (horizontal
axis) and z (vertical axis) coordinates for (A) the equilibrium
configuration (6) of two black holes and a relativistic disk, and
(B) the equilibrium configuration (7) of three black holes (the
point z � 0, r � 2.388 is a ring singularity).

mining the interaction in a many-body system (these are
sometimes associated with the individual Newman-Unti-
Tamburino parameters of the constituents [7]) necessary
to satisfy the balance equations and positive Komar mass
conditions which is absent in the two-body case.
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