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Oscillatory Instabilities of Standing Waves in One-Dimensional Nonlinear Lattices
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In one-dimensional anharmonic lattices, we construct nonlinear standing waves (SWs) reducing to
harmonic SWs at small amplitude. For SWs with spatial periodicity incommensurate with the lattice
period, a transition by breaking of analyticity versus wave amplitude is observed. As a consequence
of the discreteness, oscillatory linear instabilities, persisting for arbitrarily small amplitude in infinite
lattices, appear for all wave numbers Q fi 0, p. Incommensurate analytic SWs with jQj . p�2 may
however appear as “quasistable,” as their instability growth rate is of higher order.

PACS numbers: 05.45.–a, 42.65.Sf, 45.05.+x, 63.20.Ry
A well known and rather spectacular phenomenon oc-
curring in many nonlinear media (e.g., fluids or optical
waveguides) is the modulational (Benjamin-Feir) instabil-
ity (MI), by which a traveling plane wave breaks up into
a train of solitary waves (see, e.g., [1]). It is also well
known that wave propagation in many continuous non-
linear media is well described by nonlinear Schrödinger-
type equations, where the solitary wave trains are described
by spatially periodic and stable standing wave (SW) solu-
tions, the so-called cnoidal envelope waves [2].

An analogous instability of propagating waves occurs
also in discrete systems (e.g., anharmonic lattices), where
in the case of soft (hard) anharmonicity, waves with small
(large) wave numbers are unstable [3,4] and typically break
up into arrays of intrinsically localized modes or discrete
breathers (see, e.g., [5,6]). However, concerning the pos-
sible existence and stability of SWs in anharmonic lat-
tices, much less has been known. Although stable SW
solutions of the form A cos�Qn� cos�vt� generally exist in
harmonic lattices as linear superpositions of counterprop-
agating waves with equal amplitudes A and frequencies v

but opposite wave numbers 6Q, there is a priori no guar-
antee that these SWs will remain stable in the presence of
anharmonicity.

Here, we consider the general class of one-dimensional
(1D) anharmonic lattices described by a discrete non-
linear Klein-Gordon (KG) or Schrödinger (DNLS) equa-
tion. We first propose a method to generate (numerically)
exact time-periodic SW solutions to these equations.
These SWs, whose spatial periodicity can be either
commensurate (Q�2p rational) or incommensurate
(Q�2p irrational) with the lattice period, are found as
“multibreather” solutions [5] from the so-called “anticon-
tinuous” limit of zero intersite coupling, and they reduce
to the harmonic SWs for small amplitudes. Then, we
investigate the stability properties of these SWs and find
as a most striking result that for infinite lattices, SWs
with small but nonzero amplitude are unstable through
an oscillatory instability for all 0 , Q , p [7]. Thus,
the SWs are unstable also for wave numbers where MI
for propagating waves does not occur. It is important
to note that the additional SW instabilities appear as a
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direct consequence of the lattice discreteness and have
not been found within continuum approximations [8].
Moreover, the dynamics resulting from the SW instabili-
ties is fundamentally different from that of the MI, as the
latter generally is nonoscillatory [characterized by purely
imaginary eigenfrequencies of the linearized equations (4)
below] while the former is oscillatory (corresponding to
complex eigenfrequencies with nonzero real part) [9]. In
this Letter, our main results will be stated and motivated
briefly; full technical details will be given elsewhere [10].

We thus consider a 1D chain of classical anharmonic
oscillators with a general on-site potential V �u� and har-
monic intersite coupling CK . 0, yielding a discrete non-
linear KG equation for the particle displacements un,

ün 1 V 0�un� 2 CK �un11 1 un21 2 2un� � 0 . (1)

Here, we shall be mainly concerned with the small-
amplitude dynamics of KG chains with small intersite
coupling CK , which can be well described by a DNLS ap-
proximation [3,8,10] (its range of validity is investigated in
more details in [10]). For small oscillations, the on-site po-
tential V �u� can be expanded as V �u� � u2�2 1 au3�3 1

bu4�4 1 · · · , where the linear oscillator frequency is set
to 1. Linearizing Eq. (1) yields propagating or SW solu-
tions with wave number Q and frequency v0�Q� given by
the dispersion relation v

2
0�Q� � 1 1 4CK sin2Q�2. For

the nonlinear Eq. (1), we search for small-amplitude time-
periodic solutions as un�t� �

P
p a

� p�
n eipvbt , for which

the dynamics will be almost harmonic with frequency vb

close to v0�Q� for some Q. Then, v
2
b 2 1 � 2d will be

of order CK , and allowing for a slow time dependence
of the Fourier coefficients a

� p�
n yields [10], at order CK ,

a DNLS equation for the dominating coefficient a
�1�
n

describing the leading-order nonlinear effects. Defining
l � 25a2�3 1 3b�2 [so that for soft (hard) potentials,
l , 0 (l . 0)] and cn �

p
jlja

�1�
n , it reads

i �cn � dcn 2 sjcnj
2cn 1 C�cn11 1 cn21 2 2cn� ,

(2)

with s � sgn�l� and C � CK�2. We will assume
s � 21 without loss of generality, since changing
© 2000 The American Physical Society



VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
cn ! �21�nc�
n , d ! 4C 2 d is equivalent to changing

the sign of s.
For time-periodic SW solutions all a

� p�
n , and therefore

cn, will be time independent and can be chosen real.
Then, vanishing the left-hand side of Eq. (2) defines a
nonlinear symplectic map S : �cn, cn21� ! �cn11, cn�
in the 2D real plane, which, with the change of scale
cn !

p
C cn, depends only on the parameter d0 � d�C.

As is well known [11], this map exhibits a rich variety
of orbits, including elliptic and hyperbolic fixpoints and
periodic cycles, Kol’mogorov-Arnol’d-Moser (KAM)
tori, Aubry-Mather Cantor sets (Cantori) [12], and chaotic
orbits. Searching for nonlinear SWs in continuation
of the linear SWs cn � A cos�Qn 1 f�, with d �
4C sin2Q�2 � d0�Q�, only the periodic and quasiperiodic
orbits which can be continued to zero amplitude by vary-
ing d0 are of interest. For small amplitudes, these orbits
must be located close to the elliptic fixpoint F0 � �0, 0�,
and Q must be close to its linear rotation number u�d0�
given by d � d0�u�. As s , 0, the rotation number
for orbits rotating around F0 increases with increasing
radius, and since the map S as well as its orbits at fixed
rotation number depends continuously on d0, SWs with
wave number Q exist only for d # d0�Q�.

When Q � 2pr�s (r and s irreducible integers), there
are two families of commensurate SWs, each of them repre-
sented by one of the two s-periodic cycles (hereafter called
“h-cycle,” respectively, “e-cycle”) which bifurcate in pairs
from F0 at d � d0�Q� [11–13]. The h-cycle is hyper-
bolic for all d0, while the e-cycle is elliptic for d close to
d0�Q� and hyperbolic with reflection below a critical value
d � dc�Q�. When Q�2p is a generic irrational number,
the trajectories representing incommensurate SWs emerge
from F0 as the KAM torus with rotation number Q. At
the critical value d � dc�Q�, the KAM torus breaks up in
a transition by breaking of analyticity [12] and bifurcates
into a Cantorus and its associated “midgap” trajectory [14].
Thus, for d , dc�Q� the Cantorus and the midgap trajec-
tory define two families of nonanalytic incommensurate
SWs, which merge into the unique analytic SW defined by
the KAM torus for d $ dc�Q�.

To give a global representation of these SWs, we con-
sider the large-amplitude limit d ! 2`, or, equivalently,
the anticontinuous limit C � 0 for fixed d , 0. From
this limit, where stationary solutions to Eq. (2) can take
only the values cn � 6

p
2d and cn � 0, we can de-

scribe the SWs as multibreathers identified by a coding
sequence [5,13] s0

n defined as cn �
p

2d s0
n. By contin-

uing the SW map orbits to large negative d0, we find their
coding sequences as s0

n � x0�Qn 1 f�, where x0�x� is
the 2p-periodic odd function defined for x [ �0, p� as

x0�x� �

Ω
1 for �p 2 Q��2 # x # �p 1 Q��2 ,
0 elsewhere.

(3)

For all phases f fi fm � 6�p 2 Q��2 2 mQ (m
integer), this describes SWs corresponding either to the
h-cycles (for rational Q�2p) or to the Cantori (for irra-
tional Q�2p). We will call these SWs “type H,” and they
have the property (of importance for the stability analysis
below) that their coding sequences do not contain any
consecutive 11 or 21. For the particular phases f � fm,
x � Qm 1 f is at a discontinuity point of x0�x�, so that
s0

n has two consecutive 11 (or 21). These SWs, called
type E, correspond to e-cycles or to midgap trajectories.

The representation (3) is useful also for numerically cal-
culating directly the exact SWs of the original KG equa-
tion (1), using standard methods (e.g., Newton schemes)
for continuation of multibreathers from the anticontinuous
limit. Continuing these solutions versus vb to zero am-
plitude, we typically find (Fig. 1) a transition by break-
ing of analyticity of the hull function x�x�, defined as
un�0� � x�Qn 1 f�, for incommensurate SWs in the KG
chains, as well as in DNLS chains.

We now turn to the investigation of the dynamical sta-
bility properties of these SWs. As before, we consider
small-amplitude solutions to the KG equation (1) with
small CK , so that the DNLS approximation (2) is well
justified. With the substitution cn ! cn 1 en�t�, where
cn is real and time independent and en is small, the lin-
earization of Eq. (2) yields a standard Hill equation for en.
Its eigenmodes can be found by setting en�t� � 1

2 �un 1

yn�eivl t 1
1
2 �u�

n 2 y�
n�e2ivl t , where the eigenfrequencies

vl are given by the eigenvalue problem:

L0yn � �2C 2 d 2 c2
n�yn

2 C�yn11 1 yn21� � vlun ,

L1un � �2C 2 d 2 3c2
n�un

(4)

2 C�un11 1 un21� � vlyn .

The SW cn is linearly stable if and only if all eigenfre-
quencies vl are real.

At the anticontinuous limit �d , 0, C � 0�, the eigen-
values of (4) will be located either at vl � 0 (corre-
sponding to sites with codes js0

nj � 1) or at vl � 6d

(corresponding to s0
n � 0). For commensurate SWs the

lattice periodicity of c2
n in (4) implies that the degenerate
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FIG. 1. Hull functions x�x� for SWs in a KG chain (1)
with V �u� �

1
2 �e2u 2 1�2, CK � 0.05, Q�2p � 21�55 �

�3 2
p

5��2 � sG and (a) vb � 1.072 and (b) vb � 1.060,
respectively. The breaking of analyticity occurs at vb � 1.068
for Q�2p � sG .
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FIG. 2. Eigenvalues of Eq. (4) for a type H SW with Q �
3p�4 and (a) d0 � 28.0 and (b) d0 � 27.5 (C � 1).

eigenvalues will form bands as C is increased from zero
(see Fig. 2). With Q � pr 0�s0 (r 0 and s0 irreducible),
there will be s0-r 0 pairs of bands originating from vl �
6d, and r 0 pairs of bands originating from vl � 0 (which
always remains in the spectrum). For incommensurate
SWs, the band structure will be Cantor-like. In all cases,
bands originating from 6d can be shown to move initially
only along the real axis when C is increased from zero,
while the behavior of the bands originating from 0 will be
different for E- and H-type SWs. As the coding sequences
for E-type SWs contain pairs of consecutive 11 (or 21)
and the anharmonicity is soft, it follows from a general
result [5] that some eigenvalues always move out on the
imaginary axis as soon as C fi 0, making these SWs dy-
namically unstable for d , 0 and small C. Moreover, we
find [10] that this instability persists for all d , d0�Q�,
so that SWs of type E are unstable for any nonvanishing
amplitude. By contrary, for H-type SWs the theory of ef-
fective action [5] can be used to show that all eigenvalues
initially will move along the real axis, and thus the stability
of these SWs is preserved for C not too large [Fig. 2(a)].

Increasing d (for fixed C) the bands broaden, and the
main gap separating the two classes of bands originating
from 0 and 6d shrinks. At some value d � dK�Q� it
vanishes, and [Fig. 2(b)] eigenvalues from the two bands
will collide and move out in the complex plane (since
they have opposite Krein signature [5]). Thus, oscillatory
instabilities appear for the SW. These instabilities have
also been confirmed by direct numerical Floquet analysis
of the KG Eq. (1) for small CK [10].

For d . dK�Q� bands continue to overlap, generating
new instabilities. In many cases, the SW remains unsta-
ble until it vanishes at d � d0�Q�, although for some Q
with small s the stability is temporarily regained for some
interval of d where no bands overlap. But for all commen-
surate SWs, there is a final interval d1�Q� # d , d0�Q�
where bands with opposite Krein signature overlap, and
as a consequence all commensurate SWs are unstable for
small but nonzero amplitude. This can be proven [10] by
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considering the linear limit �d � d0�Q�, c2
n � 0�, where

the spectrum of (4) is given by vl � 62CjnQ�q�j with
nQ�q� � cosQ 2 cosq. In this limit, eigenvalues with
opposite Krein signature [given by sgn���nQ�q���� [10] ] will
overlap in an interval around vl � 0. Since for commen-
surate SWs a finite number of bands with nonzero widths
appear for d , d0�Q� when c2

n fi 0, a continuity argu-
ment [10] yields that bands with opposite Krein signature
will continue to overlap close to vl � 0 and cause insta-
bilities until d reaches some value d1�Q� , d0�Q�. (In the
linear limit, the SW is stable in spite of the band overlap,
since the eigenmodes are uncoupled.)

By contrast, for small-amplitude (analytic) incommen-
surate SWs the Cantor-like nature of the spectrum of (4)
(with “bands” of zero width) prevents the use of a simi-
lar argument for proving instability. However, the analysis
outlined below shows [10] that also these SWs are un-
stable, but the instabilities may be of higher order and thus
be more difficult to detect numerically or experimentally.

The instability of analytic SWs is proven using the
method of “band analysis” [5]. Its basic idea is to embed
the eigenvalue problem (4) for a non-Hermitian operator
into a wider eigenvalue problem for a Hermitian operator,
which we choose as (with v a real parameter)µ

L1

2v

2v

L0

∂ µ
�un	
�yn	

∂
� E

µ
�un	
�yn	

∂
. (5)

Then, each eigenvalue En is a smooth, real function (band)
of v. The real eigenfrequencies vl of (4) are given by the
intersections of these bands with E � 0, and an instability
occurs whenever a band loses a pair of intersections with
E � 0, i.e., when a “gap” opens around E � 0.

In the linear limit �cn ! 0, d ! d0�Q�� the bands can
be labeled by a wave number q and describe straight lines
E6�q; v� � 2C�cosQ 2 cosq� 6 v. Thus, for each q
there are two bands [doubly degenerate since E6�q; v� �
E6�2q; v�], and bands with different q intersect when
E2�q2; v� � E1�q1; v�. When cn describes an analytic
SW with small amplitude A, c2

n can be treated as a per-
turbation and expanded as c2

n �
P

p fpeip�2nQ1f�, where
the coefficients fp are of order A2jpj for jpj $ 1, and thus
exponentially decaying for p ! `. This introduces a cou-
pling between eigenvectors of (5) with wave numbers q
and q 1 2pQ with coupling strength proportional to fp ,
and gaps of width DE ~ 2j fpj will open at each intersec-
tion where E2�q; v� � E1�q 1 2pQ; v�. If these gaps
surround the axis E � 0, instabilities occur for the SW.

For fixed p these intersections describe an ellipse in the
�v, E� plane given byµ

vp

2C sinpQ

∂2

1

µ
Ep 2 2C cosQ

2C cospQ

∂2

� 1 . (6)

Numerical calculations of the set of bands E�v� confirm
the existence of these ellipses of gaps (see Fig. 3). The
ellipse with p � 1 corresponds to the largest gaps (and
thus the strongest instabilities if the gaps surround E � 0)
and is for d � d0�Q� tangent to E � 0 at v � 0, lying
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FIG. 3. Band spectrum of (5) for a SW with Q�2p �
34�89 � sG (Q . p�2) and d0 � 3.4 (C � 1). The visible
gap openings occur along the ellipse (6) with p � 1.

below E � 0 for p�2 , Q , p and above for 0 , Q ,

p�2. Considering also the shift of the bands caused by the
static term f0, we find [10] that when 0 , Q , p�2 gaps
will open around E � 0 in the lower part of the ellipse,
and thus these waves become immediately unstable to first
order (as for commensurate SWs with Q fi p [10]).

By contrast, for irrational Q with p�2 , Q , p all
first-order gaps open strictly below E � 0 (Fig. 3), so that
no first-order instabilities develop for these SWs. How-
ever, as is seen from (6), the ellipse corresponding to the
pth order intersections will intersect E � 0 if j cospQj .

j cosQj, and therefore there is always a p such that the
SW is unstable to order p for arbitrarily small amplitude.
But as the width of the gaps and the maximum instability
growth rates are proportional to j fpj, the instabilities be-
come very weak when the smallest p yielding an instability
becomes large (for Q close to p). We might therefore view
these analytic SWs as “quasistable.” A typical example of
the dynamics resulting from this instability in a KG chain
is shown in Fig. 4, where, after the initial oscillatory dy-
namics and an intermediate regime of mainly translational
motion, an apparently chaotic final state appears. Further

FIG. 4. Time evolution of an analytic SW (at integer multiples
of the original period), perturbed only by numerical truncation
errors, in a KG chain (1) with CK � 0.03, vb � 1.044, and
other parameters as in Fig. 1.
details concerning the long-time dynamics of the unstable
SWs will be published elsewhere.

In conclusion, we have shown that for a general class
of anharmonic lattices, different types of SWs with spatial
period commensurate or incommensurate with the lattice
exist, but are generically unstable through oscillatory in-
stabilities for small amplitudes. Thus, in discrete systems,
the nonlinearity-induced coupling between counterpropa-
gating waves leads to wave breakdown for arbitrarily weak
anharmonicity even if the individual propagating waves
are modulationally stable. The general nature of this re-
sult suggests that these instabilities should be observable in
macroscopic as well as microscopic contexts. In particu-
lar, as was recently experimentally verified [15], nonlinear
optical waveguide arrays provide a direct application of
the DNLS equation, and thus these systems are also good
candidates for detection of SW instabilities.
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