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Recent work on the Internet, social networks, and the power grid has addressed the resilience of
these networks to either random or targeted deletion of network nodes or links. Such deletions include,
for example, the failure of Internet routers or power transmission lines. Percolation models on random
graphs provide a simple representation of this process but have typically been limited to graphs with
Poisson degree distribution at their vertices. Such graphs are quite unlike real-world networks, which
often possess power-law or other highly skewed degree distributions. In this paper we study percolation
on graphs with completely general degree distribution, giving exact solutions for a variety of cases,
including site percolation, bond percolation, and models in which occupation probabilities depend on
vertex degree. We discuss the application of our theory to the understanding of network resilience.

PACS numbers: 84.35.+i, 05.50.+q, 64.60.Ak, 87.23.Ge
The Internet, airline routes, and electric power grids are
all examples of networks whose function relies crucially on
the pattern of interconnection between the components of
the system. An important property of such connection pat-
terns is their robustness —or lack thereof —to removal of
network nodes [1], which can be modeled as a percolation
process on a graph representing the network [2]. Vertices
on the graph are considered occupied or not, depending
on whether the network nodes they represent (routers, air-
ports, power stations) are functioning normally. Occupa-
tion probabilities for different vertices may be uniform or
may depend on, for example, the number of connections
they have to other vertices, also called the vertex degree.
Then we observe the properties of percolation clusters on
the graph, particularly their connectivity, as the function
determining occupation probability is varied. Previous re-
sults on models of this type [1–3] suggest that, if the con-
nection patterns are chosen appropriately, the network can
be made highly resilient to random deletion of nodes, al-
though it may be susceptible to an “attack” which specif-
ically targets nodes of high degree. We can also consider
bond percolation on graphs as a model of robustness of
networks to failure of the links between nodes (e.g., fiber
optic lines, power transmission cables, and so forth) or
combined site and bond percolation as a model of robust-
ness against failure of either nodes or links.

Percolation models built on networks have also been
used to model the spread of disease through communities
[4,5]. In such models a node in the network represents a
potential host for the disease and is occupied if that host
is susceptible to the disease. Links between nodes repre-
sent contacts capable of transmitting the disease between
individuals and may be occupied with some prescribed
probability to represent the fraction of such contacts which
actually result in transmission. A percolation transition in
such a model represents the onset of an epidemic. Similar
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models can be used to represent the propagation of com-
puter viruses [6].

The simplest and most widely studied model of undi-
rected networks is the random graph [7], which has been
investigated in depth for several decades now. However,
random graphs suffer (at least) one serious shortcoming
as models of real networks. As pointed out by a num-
ber of authors [3,8–11], vertex degrees have a Poisson
distribution in a random graph, but real-life degree dis-
tributions are strongly non-Poisson, often taking power-
law, truncated power-law, or exponential forms. This has
prompted researchers to study the properties of general-
ized random graphs which have non-Poisson degree distri-
butions [12–14].

In this paper we employ the generating function formal-
ism of Newman et al. [14] to find exact analytic solutions
for site percolation on random graphs with any probability
distribution of vertex degree, where occupation probability
is an arbitrary function of vertex degree. For the special
case of constant occupation probability, we also give solu-
tions for bond and joint site/bond percolation. Our results
indicate how robust networks should be to random dele-
tion of vertices or edges, or to the preferential deletion of
vertices with particular degree.

We start by examining site percolation for the general
case in which occupation probability is an arbitrary func-
tion of vertex degree. Let pk be the probability that a
randomly chosen vertex has degree k, and qk be the proba-
bility that a vertex is occupied given that it has degree k.
Then pkqk is the probability of having degree k and being
occupied, and

F0�x� �
X̀
k�0

pkqkxk (1)

is the probability generating function for this distribution
[15]. (Generating functions of this form have previously
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been used by Watts [16] to study cascading failures in net-
works.) Note that F0�1� � q, where q is the overall frac-
tion of occupied sites. If we wish to study the special case
of uniform occupation probability —ordinary site percola-
tion —we simply set qk � q for all k.

If we follow a randomly chosen edge, the vertex we
reach has degree distribution proportional to kpk rather
than just pk because a randomly chosen edge is more likely
to lead to a vertex of higher degree. Hence the equivalent
of (1) for such a vertex is [14]

F1�x� �

P
k kpkqkxk21P

k kpk
�

F0
0�x�
z

, (2)

where z is the average vertex degree.
Now let H1�x� be the generating function for the proba-

bility that one end of a randomly chosen edge on the graph
leads to a percolation cluster of a given number of occupied
vertices. The cluster may contain zero vertices if the ver-
tex at the end of the edge in question is unoccupied, which
happens with probability 1 2 F1�1�, or the edge may lead
to an occupied vertex with k other edges leading out of it,
distributed according to F1�x�. This means that H1�x� sat-
isfies a self-consistency condition of the form [14,17,18]

H1�x� � 1 2 F1�1� 1 xF1�H1�x�� . (3)

The probability distribution for the size of the cluster to
which a randomly chosen vertex belongs is similarly gen-
erated by H0�x�, where

H0�x� � 1 2 F0�1� 1 xF0�H1�x�� . (4)

Together, Eqs. (1)–(4) determine the cluster size distribu-
tion for site percolation on a graph of arbitrary degree dis-
tribution. From these equations we can determine several
quantities of interest such as mean cluster size, position
of the percolation threshold, and giant component size, as
demonstrated below.

For the special case of uniform (degree-independent)
site occupation probability, qk � q for all k, Eqs. (3) and
(4) simplify to

H1�x� � 1 2 q 1 qxG1�H1�x�� , (5)

H0�x� � 1 2 q 1 qxG0�H1�x�� , (6)

where G0�x� �
P

k pkxk and G1�x� � G0
0�x��z are the

generating functions for vertex degree alone introduced in
Ref. [14]. For bond percolation with uniform occupation
probability, we find that

H0�x� � xG0�H1�x�� , (7)

with H1�x� given by Eq. (5) again, and for joint site/bond
percolation with uniform site and bond occupation proba-
bilities qs and qb , we have

H1�x� � 1 2 qsqb 1 qsqbxG1�H1�x�� , (8)

H0�x� � 1 2 qs 1 qsxG0�H1�x�� . (9)
Equations (5)–(7) may be considered special cases of
these last two equations when either qs or qb is 1.

We now apply these results to the study of network
robustness in a variety of cases. First, we consider the
case of uniform site occupation probability embodied in
Eqs. (5) and (6), which corresponds to random removal
of nodes from a network, for example, through failure of
routers in a data network or through random vaccination
of a population against a disease.

Typically, no closed-form solution exists for Eq. (5), but
it is possible to determine the terms of H1�x� to any finite
order n by iterating Eq. (5) n 1 1 times starting from an
initial value of H1 � 1. The probability distribution of
cluster sizes can then be calculated exactly by substitut-
ing into Eq. (4) and expanding about x � 0. To test this
method, we have performed simulations [19] of site per-
colation on random graphs with vertex degrees distributed
according to the truncated power law

pk �

Ω
0 for k � 0 ,
Ck2te2k�k for k $ 1 .

(10)

Our reasons for choosing this distribution are twofold.
First, it is seen in a number of real-world social networks
including collaboration networks of movie actors [11] and
scientists [20]. The pure power-law distributions seen in
Internet data [8–10] are also included in (10) as a spe-
cial case k ! `. Second, the distribution has technical
advantages over a pure power-law form because the ex-
ponential cutoff regularizes the calculations, so that the
generating functions and their derivatives are finite. For
pure power-law forms on the other hand, the calculations
diverge, indicating that real-world networks cannot take a
pure power-law form and must have some cutoff (presum-
ably dependent on the system size).

Figure 1 shows the cluster size distribution from our
simulations, along with the exact solution from the gen-
erating function formalism. The agreement between the
two is good.

The sizes of the clusters correspond, for instance, to the
sizes of outbreaks of a disease among groups of suscep-
tible individuals. The parameter values used in Fig. 1 are
below the percolation threshold for this particular degree
distribution, and hence all outbreaks are small and there is
no epidemic behavior. The mean cluster size is

�s� � H 0
0�1� � q 1 qG0

0�1�H 0
1�1�

� q

∑
1 1

qG0
0�1�

1 2 qG0
1�1�

∏
, (11)

which diverges when 1 2 qG0
1�1� � 0. This point marks

the percolation threshold of the system, the point at which
a giant component of connected vertices first forms. Thus
the critical occupation probability is

qc �
1

G0
1�1�

. (12)
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FIG. 1. Probability Ps that a randomly chosen vertex belongs
to a cluster of s sites for k � 10, t � 2.5, and q � 0.65 from
numerical simulation on systems of 107 sites (circles) and our
exact solution (solid line). Inset: the percolation threshold qc
from Eq. (12) (solid lines) vs computer simulations with t �
1.5 (circles), 2.0 (squares), and 2.5 (triangles).

A result equivalent to this one has been derived previously
by Cohen et al. [2] by different means.

In the language of disease propagation qc is the point
at which an epidemic of the disease first occurs. In the
language of network robustness, it is the point at which the
network achieves large scale connectivity and can therefore
function as an effective distribution network. Conversely,
if we are approaching the transition from values of q above
qc it is the point at which a sufficient number of individuals
are immune to a disease to prevent it from spreading, or the
point at which a large enough number of nodes have been
deleted from a distribution network to prevent distribution
on large scales.

The inset in Fig. 1 shows the behavior of the percola-
tion threshold with the cutoff parameter k for a variety of
values of t. Note that as the values of k become large,
the percolation threshold becomes small, indicating a high
degree of robustness of the network to random deletion
of nodes. For t � 2.5 (roughly the exponent for the In-
ternet data [8]) and k � 100, the percolation threshold
is qc � 0.17, indicating that one can remove more than
80% of the nodes in the network without destroying the gi-
ant component — the network will still possess large-scale
connectivity. This result agrees with recent studies of
the Internet [1,2] which indicate that network connectiv-
ity should be highly robust against the random removal of
nodes.

Another issue that has attracted considerable recent at-
tention is the question of robustness of a network to non-
random deletion targeted specifically at nodes with high
degree. Albert et al. [1] and Broder et al. [3] both looked
at the connectivity of a network with power-law distributed
vertex degrees as the vertices with highest degree were
progressively removed. In the language of our percolation
models, this is equivalent to setting
5470
qk � u�kmax 2 k� , (13)

where u is the Heaviside step function [21]. This re-
moves (unoccupies) all vertices with degree greater than
kmax. To investigate the effect of this removal, we cal-
culate the size of the giant component in the network, if
there is one. Above the percolation transition the genera-
ting function H0�x� gives the distribution of the sizes of
clusters of vertices which are not in the giant component
[17], which means that H0�1� is equal to the fraction of
the graph which is not occupied by the giant component.
The fraction S which is occupied by the giant component
is therefore given by

S � 1 2 H0�1� � F0�1� 2 F0�u� , (14)

where u is a solution of the self-consistency condition

u � 1 2 F1�1� 1 F1�u� . (15)

In cases where this last equation is not exactly solvable we
can evaluate u by numerical iteration starting from a suit-
able initial value. In Fig. 2 we show the results for S from
this calculation for graphs with pure power-law degree dis-
tributions as a function of kmax for a variety of values of t.
(The removal of vertices with high degree regularizes the
calculation in a similar way to the inclusion of the cutoff
k in our earlier calculation, so no other cutoff is needed in
this case.) On the same plot we also show simulation re-
sults for this problem, and once more agreement of theory
and simulation is good.

Opinions appear to differ over whether networks such
as this are robust or fragile to this selective removal of
vertices. Albert et al. [1] point out that only a small frac-
tion of the highest-degree vertices need be removed to
destroy the giant component in the network and hence
remove all long-range connectivity. Conversely, Broder
et al. [3] point out that one can remove all vertices with
degree greater than kmax and still have a giant component
even for surprisingly small values of kmax. As we show
in Fig. 2, both viewpoints are correct: they are merely
different representations of the same data. In the upper
frame of the figure, we plot giant component size as a
function of the fraction of vertices removed from the net-
work, and it is clear that the giant component disappears
when only a small percentage are removed — just 1% for
the case t � 2.7—so that the network appears fragile. In
the lower frame we show the same data as a function of
kmax, the highest remaining vertex degree, and we see that
when viewed in this way the network is, in a sense, robust,
since kmax must be very small to destroy the giant compo-
nent completely — just 10 in the case of t � 2.7.

To conclude, we have used generating function methods
to solve exactly for the behavior of a variety of percolation
models on random graphs with any distribution of vertex
degrees, including uniform site, bond and site/bond
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FIG. 2. Size of the giant component S in graphs with
power-law degree distribution and all vertices with degree
greater than kmax unoccupied, for t � 2.4 (circles), 2.7
(squares), and 3.0 (triangles). Points are simulation results for
systems with 107 vertices; solid lines are the exact solution.
Upper frame: S as a function of fraction of vertices unoccupied.
Lower frame: S as a function of the cutoff parameter kmax.

percolation, and site percolation in which occupation
probability is a function of vertex degree. Percolation
systems on graphs such as these have been suggested
as models for the robustness of communication or dis-
tribution networks to breakdown or sabotage, and for
the spread of disease through communities possessing
some resistance to infection. Our exact solutions allow
us to make predictions about the behavior of such model
systems under quite general types of breakdown or inter-
ference. Among other results, we find that a distribution
network such as the Internet, which has an approximately
power-law vertex degree distribution, should be highly
robust against random removal of nodes (for example,
random failure of routers), but is relatively fragile, at least
in terms of fraction of nodes removed, to the specific
removal of the most highly connected nodes.
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