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Communication Capacity of Quantum Computation
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By considering quantum computation as a communication process, we relate its efficiency to its clas-
sical communication capacity. This formalism allows us to derive lower bounds on the complexity of
search algorithms in the most general context. It enables us to link the mixedness of a quantum computer
to its efficiency and also allows us to derive the critical level of mixedness beyond which there is no
quantum advantage in computation.

PACS numbers: 03.67.Lx, 03.65.Bz, 03.67.Hk
Any computation, both classical and quantum, is for-
mally identical to a communication in time. At time t � 0,
the programmer sets the computer to accomplish any one
of several possible tasks. Each of these tasks can be re-
garded as embodying a different message. Another pro-
grammer can obtain this message by looking at the output
of the computer when the computation is finished at time
t � t1. A surge of interest in both quantum computation
[1–3] and quantum communication has been witnessed in
recent years [4,5]. Computation based on quantum prin-
ciples allows for more efficient algorithms for solving cer-
tain problems than algorithms based on purely classical
principles. Quantum communication, on the other hand,
can be used for unconditionally secure secret key distribu-
tion [6]. However, to date, the relationship between these
two areas (i.e., quantum computation and quantum com-
munication) has not been fully explored. Although some
work interrelating quantum communication and computa-
tion does exist [7], this does not utilize any entropic results
from communication theory to study computational com-
plexity. An entropic approach to computational complexity
exists in classical complexity theory from the point of view
of Kolmogorov complexity [8,9]. In this Letter we connect
the classical capacity of a quantum communication channel
[4] with the efficiency of quantum computation using en-
tropic arguments. This approach allows us to derive lower
bounds on the complexity of search algorithms in the most
general context. It also enables us to link the mixedness of
a quantum computer to its efficiency. This offers a unify-
ing framework for quantum information processing.

Let us first introduce a few definitions and a communi-
cation model of quantum computation. We have two pro-
grammers, the sender and the receiver, and two registers,
the memory (M) register and the computational (C) reg-
ister. The sender prepares the memory register in a cer-
tain quantum state ji�M which encodes the problem to be
solved. For example, in the case of factorization [2], this
register will store the number to be factored. In case of
a search [3], this register will store the state of the list to
be searched. The number N of possible states ji�M will,
of course, be limited by the greatest number that the given
computer could factor or the largest list that it could search.
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The receiver then prepares the computational register in
some initial state r

0
C . Both the sender and the receiver feed

the registers (prepared by them) to the quantum computer.
The quantum computer implements the following general
transformation on the registers:

�ji� �ij�M ≠ r0
C ! �ji� �ij�M ≠ Uir

0
CU

y
i . (1)

The resulting state rC�i� � Uir
0
CU

y
i of the computational

register contains the answer to the computation and is mea-
sured by the receiver. As the quantum computation should
work for any ji�M , it should also work for any mixturePN

i pi�ji� �ij�M , where pi are probabilities. For the sender
to use the above computation as a communication proto-
col, he has to prepare any one of the states ji�M with an
a priori probability pi . The entire input ensemble is thusPN

i pi�ji� �ij�M ≠ r
0
C . Because of the quantum computa-

tion, this becomes
NX

i

pi�ji� �ij�M ≠ r0
C !

NX

i

pi�ji� �ij�M ≠ rC�i� . (2)

Whereas before the quantum computation, the two regis-
ters were completely uncorrelated (mutual information is
zero), at the end, the mutual information becomes

IMC :� S�rM� 1 S�rC� 2 S�rMC�

� S�rC� 2

NX

i

piS�rC�i�� , (3)

where rM and rC are the reduced density operators for
the two registers, rMC is the density operator of the entire
M 1 C system, and S�r� � 2Trr logr is the von Neu-
mann entropy (for conventional reasons we will use log2
in all calculations). Notice that the value of the mutual in-
formation (i.e., correlations) is equal to the Holevo bound
H � S�rC� 2

PN
i piS�rC�i�� for the classical capacity of

a quantum communication channel [4] [note that rC �PN
i pirC�i�]. This tells us how much information the re-

ceiver can obtain about the choice ji�M made by the sender
by measuring the computational register. The maximum
value of H is obtained when the states rC�i� are pure and
orthogonal. Moreover, the sender conveys the maximum
information when all the message states have equal a priori
© 2000 The American Physical Society
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probability (which also maximizes the channel capacity).
In that case the mutual information (channel capacity) at
the end of the computation is logN . Thus the communica-
tion capacity IMC [given by Eq. (3)] gives an index of the
efficiency of a quantum computation. A necessary target
of a quantum computation is to achieve the maximum pos-
sible communication capacity consistent with given initial
states of the quantum computer. We cannot give a suffi-
ciency criterion from our general approach as this depends
on the specifics of an algorithm. If one breaks down the
general unitary transformation Ui of a quantum algorithm
into a number of successive unitary blocks, then the maxi-
mum capacity may be achieved only after the number of
applications of the block. In each of the smaller unitary
blocks, the mutual information between the M and the C
registers (i.e., the communication capacity) increases by
a certain amount. When its total value reaches the maxi-
mum possible value consistent with a given initial state of
the quantum computer, the computation is regarded as be-
ing complete.

We now proceed to illustrate one immediate application
of the above formalism. Any general quantum algorithm
has to have a certain number of queries into the memory
register [10–12] (this is necessitated by the fact that the
transformation on the computational register has to depend
on the problem at hand, encoded in ji�M). These queries
can be considered to be implemented by a black box into
which the states of both the memory and the computational
registers are fed. The number of such queries needed in a
certain quantum algorithm gives the black box complexity
of that algorithm [10–12] and is a lower bound on the com-
plexity of the whole algorithm. Recently, Ambainis [12]
showed in a very elegant paper that if the memory register
was prepared initially in the superposition

PN
i ji�M , then,

in a search algorithm, O�
p

N � queries would be needed
to completely entangle it with the computational register.
This gives a lower bound on the number of queries in a
search algorithm. In a manner analogous to his, we will
calculate the change in mutual information between the
memory and the computational registers [from Eq. (3)] in
one query step. The number of queries needed to increase
the mutual information to logN (for perfect communica-
tion between the sender and the receiver), is then a lower
bound on the complexity of the algorithm.

Any search algorithm (whether quantum or classical,
irrespective of its explicit form) will have to find a match
for the state ji�M of the M register among the states j j�C

of the C register and associate a marker to the state that
matches (here j j�C is a complete orthonormal basis for
the C register). The most general way of doing such a
query in the quantum case is the black box unitary trans-
formation [12]

UBji�M j j�C � �21�dij ji�M j j�C . (4)

Any other unitary transformation performing a query
matching the states of the M and the C registers could be
constructed from the above type of query. We would like
to put a bound on the change of the mutual information
in one such black box step. Let the memory states ji�M

be available to the sender with equal a priori probability
so that the communication capacity is a maximum. His
initial ensemble is then 1

N

PN
i �ji� �ij�M . Let the receiver

prepare the C register in an initial pure state c0 (in fact,
the power of quantum computation stems from the ability
of the receiver to prepare pure state superpositions of
form 1

N

PN
j j j�C). This is an equal weight superposition

of all j j�C as there is no a priori information about the
right j j�C . This can be done by performing a Hadamard
transformation to each qubit of the C register. In general,
there will be many black box steps on the initial ensemble
before a perfect correlation is set up between the M and
the C registers. Let, after the kth black box step, the state
of the system be

rk �
1
N

NX

i

�ji� �ij�M ≠ �jck�i�� �ck�i�j�C , (5)

where

jck�i��C �
X

j

ak
ijj j�C . (6)

The �k 1 1�th black box step changes this state to rk11 �
1
N

PN
i �ji� �ij�M ≠ �jck11�i�� �ck11�i�j�C with

jc �k11��i�� �
NX

i,j

ak
ij�21�dij j j�C . (7)

Thus we only have to evaluate the difference of mutual
information between the M and the C registers for the
states. This difference of mutual information [when com-
puted from Eq. (3)] can be shown to be the difference
jS�rk11

C � 2 S�rk
C�j [13]. This quantity is bounded from

the above by [14]

jS�rk11
C � 2 S�rk

C�j # dB�rk
C , rk11

C � logN

2 dB�rk
C , rk11

C � logdB�rk
C , rk11

C � ,
(8)

where, dB�s, r� �
p

1 2 F2�s, r� is the Bures met-
ric and F�s, r� � Tr

pp
r s

p
r is the fidelity. Using

methods similar to Ambainis [12], it can be shown that
F2�r0

C , r1
C� $

N22
N from which it follows that the change

in the first step

jS�r0
C� 2 S�r1

C�j #
3

p
N

logN . (9)

The change jS�rk
C� 2 S�rk11

C �j in the subsequent steps has
to be less than or equal to the change in the first step.
This is because the Bures metric does not increase un-
der general completely positive maps (which is what the
query represents when we trace out the M register). Any
other operations performed only on the C register in be-
tween two queries can only reduce the mutual information
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between the C and the M registers. This means that at
least O�

p
N � steps are needed to produce full correlations

(maximum mutual information of value logN) between the
two registers. This gives the black box lower bound on the
complexity of any quantum search algorithm. Of course,
we know that there also exists an algorithm achieving this
bound due to Grover [3] and this has been proven to be op-
timal [10,12,15]. However, our proof is the most general as
it holds even when any type of completely positive map is
allowed between the queries (only in Ref. [15] a heuristic
argument was made for the optimality of Grover’s algo-
rithm under general operations).

We now use Grover’s algorithm to show how the mutual
information varies with time in a quantum search. The gen-
eral sequence described by Cleve et al. [16] for Grover’s
algorithm will be used in this Letter. The algorithm con-
sists of repeated blocks, each consisting of a Hadamard
transform on each qubit of the C register, followed by a
UB (our black box transformation), followed by another
Hadamard transform on each qubit of the C register and
finally a phase flip f0 of the j00 · · · 0�C state of the C reg-
ister (see Fig. 1). This block can then be repeated as many
times as is necessary to bring the mutual information to
its maximum value of logN , which, as we have shown
in Eq. (9), is O�

p
N �. Note that the only transformation

correlating the M and C registers is the black box trans-
formation UB and all the other transformations are done
only on the C register and therefore do not change the mu-
tual information between the two registers. In Fig. 2 we
have plotted the variation of mutual information between
the M and the C registers (i.e., the communication capacity
of the quantum computation) with the number of iterations
of the block in Grover’s algorithm. It is seen that the mu-
tual information oscillates with the number of iterations.
Figure 2 is plotted for a four qubit computational register
which can search a database of 16 entries. It is seen that
the period is roughly 6, which means that the number of
steps needed to achieve maximum mutual information is
roughly 3. This is well above our bound for the minimum
number of steps, which is 4�3 in this case.

FIG. 1. The figure shows the circuit for Grover’s algorithm.
C is the computational register and M is the memory register.
UB is the black box query transformation, H is a Hadamard
transformation on every qubit of the C register, and f0 is a
phase flip in front of the j00 · · · 0�C . The block consisting of H,
UB, H, and f0 is repeated a number of times.
5450
The three graphs (a), (b), and (c) in Fig. 2 are for dif-
ferent values of initial mixedness of the C register. We find
that the mutual information fails to rise to the maximum
value of logN when the state of the computational register
is mixed. Our formalism thus allows us to calculate the
performance of a quantum computation as a function of
the mixedness (quantified by the von Neumann entropy)
of the computational register. We can put a bound on the
entropy of the second register after which the quantum
search becomes as inefficient as the classical search. Sup-
pose the initial entropy S�r0

C� of the C register exceeds
1
2 logN . Then Eq. (3) implies that the increase in mu-
tual information between the M and the C registers in the
course of the entire quantum computation would be at most
log

p
N . This can already be achieved by a classical data-

base search in
p

N steps. So there is no advantage in using
quantum evolution when the initial state is more mixed
than a certain amount. This value of the initial entropy of
the C register above which you do not get any advantage
from the quantum search is

S�r0
C� $

1
2

logN . (10)

The above condition for no quantum advantage in the
search algorithm is only a sufficient condition and not
a necessary condition. This is similar to the entropic
conditions sufficient to ensure no quantum benefit from
teleportation and dense coding [17]. Note that it is not
that the algorithm is slowed down in any way by mixed-
ness of the C register, but that we have lower than the
amount of correlations that can be obtained in the same
amount of time by classical querying. This result would

FIG. 2. The figure shows the dependence of the mutual infor-
mation between the M and the C registers as a function of the
number of times the block in Grover’s algorithm is iterated for
various values of initial mixedness of the C register. Each qubit
of the C register is initially in the state pj0� �0j 1 �1 2 p� 3
j1� �1j, (a) p � 1, (b) p � 0.95, and (c) p � 0.7. The (a) and
(b) computations achieve higher mutual information than clas-
sically allowed in the order of root N steps, while (c) does not.
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tell an experimentalist the temperature below which a
system has to be cooled in order to begin to see quantum
advantages in computation. For example, suppose the dif-
ference in energy between the levels j0� and j1� is DE
for the system being used by an experimentalist. Then the
critical temperature Tc beyond which there is no quan-
tum advantage in computation can be calculated from
the relation log�1 1 a� 2 a

11a loga $ 1
2 where a �

exp�2DE�KTc� in which K is the Boltzmann constant.
Analogous analysis can be applied to other algorithms.

Finally, we point out that the states of the M register
need not be a mixture, but could be an arbitrary superpo-
sition of states ji�M (such a state was used by Ambainis in
his argument [12]). All the above arguments still hold in
that case, and the M and the C registers become quantum
mechanically entangled and not just classically correlated.
Thus our analysis implies that any quantum computation
can be viewed as a quantum measurement process [18]
(though there is more to quantum computation than just
the concepts of measurement and communication). The
system being measured is the M register and the apparatus
is the C register of the quantum computer. As the time pro-
gresses the apparatus (register C) becomes more and more
correlated (or entangled) to the system (register M). This
means that the states of register C become more and more
distinguishable which allows us to extract more informa-
tion about the M register by measuring the C register. The
analysis in the last paragraph, where we showed the limi-
tations on the efficiency of quantum computation imposed
by the mixedness of the C register, applies also to the ef-
ficiency of a quantum measurement when the apparatus is
in a mixed state. Mixedness of an apparatus, to the best
of our knowledge, has been considered only in a quantum
measurement for treating foundational issues (such as the
origin of a statistical nature of a quantum measurement
[18]) and never for analyzing efficiency. In general prac-
tice, any apparatus, however macroscopic, is considered to
be in a pure quantum state before the measurement. Our
approach highlighting the formal analogy between mea-
surement and computation offers a way to analyze mea-
surement in a much more general context.
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