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Optically Injected Spin Currents in Semiconductors
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We show that quantum interference of one and two photon absorption from a two color field allows one
to optically inject ballistic spin currents in unbiased semiconductors. The spin currents can be generated
with or without an accompanying electrical current and can be controlled using the relative phase of
the two colors. We characterize the injected spin currents using symmetry arguments and an eight-band
Kane model.

PACS numbers: 78.20.Ls, 42.65.–k, 72.40.+w
The control of electronic spin in semiconductors is im-
portant for the study of spin dynamics in many-body sys-
tems, crucial for the development of new data storage and
processing scenarios based on the spin degree of freedom,
and essential as a first step towards a solid state imple-
mentation of a quantum computer [1]. There has been
considerable work on achieving spin-polarized currents in
semiconductors using transport in the presence of mag-
netic impurities [2–4] and injection from a ferromagnetic
contact [5,6]. Optical manipulation of electron spin has
largely been based on the fact that partially spin-polarized
carriers can be injected in a semiconductor via one pho-
ton absorption of circularly polarized light [7]. This has
been understood since the 1970s, but it is only recently
that such optically oriented carriers have been dragged by
a bias voltage to produce a spin-polarized current [8,9].

All these techniques rely on either an initial spin asym-
metry or the use of transport effects to sort or accelerate
the spins of interest. Moreover, the spin currents are al-
ways accompanied by charge currents. In this Letter we
show that direct optical injection of spin currents in an
unbiased, clean semiconductor should be possible—either
with or without a concomitant charge current. Hence spin
currents can be optically manipulated on the time scale of
the ultrafast laser pulses now available. Admittedly, trans-
port phenomena will modify the evolution of the spin cur-
rent, but they are not essential for its generation.

The new effect we introduce here involves the quantum
interference of one- and two-photon absorption processes
in a two color light field. Such quantum interference can
inject a k-space distribution of carriers with polar asym-
metry —i.e., an electrical current —that can be controlled
by adjusting the relative phase of the two beams [10,11].
In this Letter we show that by the appropriate choice of
beam polarizations, the current is spin polarized. We also
show that it is possible to generate spin currents with no
associated electrical current. Here the quantum interfer-
ence sorts the carriers as they are injected, sending those
of one spin in one direction and those of the opposite spin
in the opposite direction.

Unlike some coherent control schemes [12,13], the ef-
fect does not rely on any specific crystal symmetry; in
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this Letter we assume a bulk cubic crystal [14]. Since
the asymmetry in spin populations that appears is a conse-
quence of the spin-orbit coupling, spin injection due to one
photon absorption decreases significantly when transitions
from the split-off band become allowed [7]. A similar de-
crease occurs for the spin current injection; thus we here
consider only light frequencies low enough so that there
are no transitions from the split-off band.

In the independent particle approximation, the two color
light field E�t� � Eve2ivt 1 E2ve2i2vt 1 c.c. causes
transitions from the semiconductor ground state j0� to
states jcsypk� by exciting an electron from valence band
y with spin index p to conduction band c with spin in-
dex s while leaving its crystal wave vector k unchanged.
We write the state of the system as jc� � co�t� j0� 1P

ccsypk�t� jcsypk� and calculate ccsypk�t� to second or-
der in perturbation theory, treating the light classically in
the long wavelength limit. The injection rate of the expec-
tation value of any observable û can then be written as

d�û��dt � �u1 1 �uI 1 �u2 ,

where �u1 is due to one photon absorption from the 2v

beam, �u2 is due to two photon absorption from the v

beam, and �uI is an interference term. Each of these will
have contributions from the injected electrons and holes,
e.g., �u1 � �u1;e 1 �u1;h. Through scattering and recombi-
nation processes, �û� will relax to a steady state value. The
injection terms discussed here can be used as a source in
hydrodynamic equations [10,15], or a more exact quantum
calculation can be made that treats both the generation and
relaxation on an equal footing [16]; we defer these issues
to a later communication. Electrical current injection ex-
periments at room temperature are in good qualitative, and
indeed semiquantitative, agreement with even the simpler
transport description [15]; we would expect the same for
spin current injection experiments. Since spin relaxation
times for holes are much shorter than those for electrons
[7], the electron contribution to the spin current will prob-
ably be the essential one in comparing with experiment,
but we give both electron and hole contributions below.

Our measure of spin current is the pseudotensor Kab �
�ŷaŜb�, where v̂ is the velocity operator and Ŝ is the
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spin operator; superscript lowercase letters denote Carte-
sian components. For crystals of high enough symmetry,
there is no spin current due to one or two photon absorp-
tion alone. The interference term survives, however, and
is given by

�Kab
I;e �

2p

L3

X
c,y,s,s0,p,k

�cskjŷaŜb jcs0k�

3 V
�1��
cs,yp,kV

�2�
cs0,yp,kd�2v 2 vcy�k�� 1 c.c. ,

�Kab
I;h � 2

2p

L3

X
c,y,s,p,p0,k

�yp0kjŷaŜbjypk�

3 V
�1��
cs,yp,kV

�2�
cs,yp0,kd�2v 2 vcy�k�� 1 c.c. ,

where jnsk� is a Bloch state, the one photon amplitude
V

�1�
cs,yp,k and two photon amplitude V

�2�
cs0,yp,k are

V
�1�
cs,yp,k � i

e
2h̄v

E2v ? vcs,yp�k� ,

V
�2�
cs0,yp,k � 2

µ
e
h̄v

∂2

3
X
ns00

�Ev ? vcs0,ns00�k�� �Ev ? vns00,yp�k��
vcy�k��2 1 vyn�k�

,

where vns,ms0�k� is a velocity matrix element between
Bloch states, h̄vn�k� is the energy of band n, vnm�k� �
vn�k� 2 vm�k�, and L3 is the normalization volume. We
have assumed for simplicity that there is no degeneracy
among bands except for spin degeneracy.

The form of �Kab is constrained by symmetry consider-
ations. For cubic semiconductors with the point group Td ,
O, or Oh, �Kab has the same symmetry it would have in
an isotropic medium and can be written in terms of four
independent parameters Ai , i � 1 4, as

�Kab
I �D � A1E

a
v�E�

2v 3 Ev�b 1 A2�E�
2v 3 Ev�aEb

v

1 A3eabcE�c
2v�Ev ? Ev�

1 A4eabcEc
v�E�

2v ? Ev� 1 c.c. ,

where eabc is the completely antisymmetric Levi-Civita
pseudotensor, and the repeated index c is to be summed
over. A common factor D, defined below, has been sepa-
rated so that the Ai are dimensionless.

We determine these parameters using an eight-band
Kane model [7,17]. The model diagonalizes the Hamil-
tonian in a basis of eight zone center states. We neglect
terms in the bands linear in k that can arise in the absence
of inversion symmetry. We use the model to lowest
order in k, obtaining the energy bands, states, and matrix
elements in terms of three parameters: the fundamental
band gap Eg, the split-off gap D, and the Kane energy
EP . The resulting four pairs of doubly degenerate bands,
shown in Fig. 1, are parabolic. They are characterized
by effective masses mn, which we treat as additional
independent parameters; note that the masses associated
E
ne

rg
y

k

Eg

∆

c

hh

lh

so

FIG. 1. Eight-band Kane model of a direct band gap semi-
conductor consisting of four pairs —conduction (c), heavy hole
(hh), light hole (lh), and split-off (so)—of doubly degenerate
bands. The fundamental gap Eg and split-off gap D are shown,
and one and two photon transitions are indicated.

with the valence bands are negative. For the velocity
operator we take v̂ � p̂�m, neglecting a term due to the
spin-orbit coupling.

Because of the energy denominator in the two pho-
ton amplitude, intermediate states are less important the
further in energy they are from the conduction and va-
lence band of interest. We distinguish two types of terms:
two-band terms, in which the intermediate band is the same
as either the initial or final band, and three-band terms,
in which it is different. Our calculation includes all the
two-band terms, and only the three-band terms in which
the intermediate band comes from the set 	lh, hh, c
.

For the hh-c transition, the nonzero two-band electron
terms are

A1;e:hh-c � A2;e:hh-c �

µ
mc,hh

m

∂3�2 m
mc

�1 1 z �

and the nonzero three-band electron terms are

A1;e:hh-lh-c �

µ
mc,hh

m

∂5�2 m
mc

EP

3Eg

1 2 z

1 1 ´mc,hh�mhh,lh
,

A2:e,hh-lh-c � A4:e,hh-lh-c�2 � 2A1;e:hh-lh-c ,

where ´ � �2h̄v 2 Eg���h̄v�, m21
n,m � m21

n 2 m21
m , and

the quantity

z �
1
3

EPD

Eg�D 1 Eg�
mc

m

is a measure of the extent to which the spin and velocity
of an electron in the conduction band are entangled;
setting z to zero gives the expressions that would
have resulted if the approximation �cskjŷaŜb jcs0k� �
�ckjŷajck� �cskjŜbjcs0k� had been made. For the lh-c
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transition, the nonzero two-band electron terms are

A1;e:lh-c �

µ
mc,lh

m

∂3�2 m
mc

µ
7
3

2 z

∂
,

A2;e:lh-c �

µ
mc,lh

m

∂3�2 m
mc

µ
7
3

z 2 1

∂
,

and the nonzero three-band electron terms are

A1;e:lh-hh-c � 2

µ
mc,lh

m

∂5�2 m
mc

EP

3Eg

1
1 2 ´mc,lh�mhh,lh

,

A2;e:lh-hh-c � zA1;e:lh-hh-c ,

A3;e:lh-hh-c � 2�z 2 1�A1;e:lh-hh-c .

The factor

D �
p

2
60p

e3EP
p
m

�2h̄v 2 Eg�3�2

h̄4v4

contains the frequency dependence of the two-band terms.
For the holes, we give only the nonzero two-band terms

A1;h:hh-c � A2:h,hh-c � 2

µ
mc,hh

m

∂3�2 m
mhh

,

A1;h:lh-c � 2
17
9

µ
mc,lh

m

∂3�2 m
mlh

µ
3EP 2 3Eg

2EP 2 3Eg

∂
,

A2;h:lh-c � 2
1
3

µ
mc,lh

m

∂3�2 m
mlh

µ
7EP 1 3Eg

2EP 2 3Eg

∂
.

While the holes are injected with spin opposite that of the
electrons [7], their velocity is also opposite, and thus the
hole and electron spin currents have the same sign.

The same model used to calculate �Kab above gives an
electrical current injection

�JaI � 2iD
e
h̄

�B1E
a
v�Ev ? E�

2v� 1 B2E
�a
2v�Ev ? Ev��

1 c.c. ,

where the parameters Bi (which include both electron and
hole currents) are given by

B1:lh-c �
22
3

r
mc,lh

m
; B2:lh-c � 2

r
mc,lh

m
,

B1:hh-c � 6

r
mc,hh

m
; B2:hh-c � 22

r
mc,hh

m
,

B1:lh-hh-c � 2
4
3

µ
mc,lh

m

∂3�2 1
1 2 ´mc,lh�mhh,lh

EP

Eg
,

B2:lh-hh-c � 22B1:lh-hh-c ,

B1:hh-lh-c � 2

µ
mc,hh

m

∂3�2 1
1 1 ´mc,hh�mhh,lh

EP

Eg
,

B2:hh-lh-c � 2
1
3
B1:hh-lh-c .

Since we use an isotropic Kane model, there are two in-
dependent parameters in �Ja

I rather than the three expected
for crystals with point group Td , O, or Oh. The electrical
5434
current injection �JI has also been calculated using ab ini-
tio density-functional theory [10] and a simple three-band
model [18]. A nonzero �J1 or �J2 requires lower crystal sym-
metry or surfaces [13].

We now examine the spin, current, and spin currents
injected by various beam configurations. The beams are
taken to be copropagating. Since our model is isotropic,
there is no loss in generality in choosing the propagation
direction as ẑ.

Case 1: Same circular polarizations.—Ev�2v �
Ev�2veifv�2v �x̂ 6 iŷ��

p
2. The electron spin injection

due to one photon absorption from the 2v beam is
�S1;e � 7�h̄�4� �n1ẑ within the Kane model, where �n1 is
the one photon carrier injection rate [7]. The electron spin
injected due to two photon absorption from the v beam,
also calculated within the Kane model, is

�S2e � 7
h̄
2

p
mc,hh 1 �7�3�pmc,lh

3
p
mc,hh 1 �11�3�pmc,lh

�n2ẑ ,

where only the two-band terms are included, and �n2 is
the two photon carrier injection rate. There is no inter-
ference term in either the spin or carrier injection when
the crystal possesses inversion symmetry and thus the spin
injection is simply �Se � �S1e 1 �S2e [19]. The electrical
current injection is �JI �

p
2 m̂DB1E2

vE2ve�h̄, where the
direction m̂ � x̂ sin�2fv 2 f2v� 6 ŷ cos�2fv 2 f2v�.
Its magnitude is comparable to the current from colinearly
polarized beams; in fact, it is a factor of

p
2 smaller, since

B1 ¿ B2. The spin current injection is

�Kab
I � 7

p
2E2

vE2vD

3 	�A1 2 A4�m̂aẑb 1 �A2 1 A4�ẑam̂b
 .

Recalling that the first index of Kab is associated with
the carrier velocity, we see that the first term in �Kab

I
shows that the electrical current is partially spin polar-
ized. The extent of the spin polarization of the current f
is defined by �Kaz�� �Ja�e� � 7fh̄�2. In this case, f �
2�A1 2 A4��B1. Using parameter values appropriate to
GaAs [20], f � 0.57. The second term in �Kab

I repre-
sents spins pointing along m̂ that move along ẑ. Since
there is no net electrical current in the ẑ direction, this is
a pure spin current. It arises because the electrons have a

x̂ŷ
ẑ

(a) (b)

FIG. 2. Schematic illustrations of the net electron motion com-
bining the information of �Kab and �Ja for (a) case 1 with both
beams right circularly polarized and (b) case 2, cross-polarized
beams. The directions are specified in the text.
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distribution of velocities such that those with positive ẑ
components have opposite average spin to those with nega-
tive ẑ components. In GaAs, the second term is a factor
of 7.7 smaller than the first. The situation is schematically
indicated in Fig. 2(a).

Case 2: Cross linear polarizations.—Ev � Eveifv x̂
and E2v � E2veif2v ŷ. In this case, since the beams are
linearly polarized, there is no spin injection, �Se � �Sh � 0,
which can be verified by symmetry arguments. The electri-
cal current depends sinusoidally on the relative phase of the
two beams, �JI � 2�e�h̄�B2DE2

vE2v sin�2fv 2 f2v�ŷ.
According to the Kane model, its magnitude is much
smaller than the current from cocircularly polarized
beams, since the contributions from the heavy hole and
light hole transitions largely cancel in B2 rather than
adding in B1 [21]. In the notation of Atanasov et al. [10],
the current in this case is proportional to hyxxy while the
current in case 1 is proportional to

p
2 Imhxxyy , which

is an order of magnitude greater than hyxxy in their
ab initio calculations. The spin current for cross linear
polarizations is

�Kab
I � 22E2

vE2vD cos�2fv 2 f2v�
3 	�A1 1 A3�x̂aẑb 1 �A2 2 A3�ẑax̂b
 .

Again there are two terms, the first arising from carrier mo-
tion along Ev with spins aligned along the beam propaga-
tion direction, and the second arising from carrier motion
along the beam propagation direction with spins aligned
along Ev . Both of these are pure spin currents, since there
is no electrical current in either direction. In GaAs, when
the optical phase difference is zero, the first term is a factor
of 1.3 larger and the second term is a factor of 3.3 smaller
than the first term of the case 1 spin current injection. The
electrical current injected along the E2v polarization is al-
ways unpolarized. The situation is schematically indicated
in Fig. 2(b).

There is no current or spin current injected when the
beams have opposite circular polarizations, and there
is only a small spin current injection, proportional to
A3 1 A4, when the beams are colinearly polarized.

In summary, we have shown that the quantum interfer-
ence between one and two photon absorption can be used
to inject and coherently control a spin current. This tech-
nique should prove an ideal way to study spin transport
and relaxation, since spin current can be injected without
a concomitant electrical current. And, as progress is made
in extending relaxation times, it should lead to the all-
optical manipulation of spin currents on an ultrafast time
scale. For simplicity we have presented calculations only
for bulk GaAs using an eight-band Kane model, but the ef-
fect will survive in nanostructure geometries, where there
may be more applications to device physics.
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