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Spontaneous Breakdown of Translational Symmetry in Quantum Hall Systems:
Crystalline Order in High Landau Levels
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We report on results of systematic numerical studies of two-dimensional electron gas systems subject
to a perpendicular magnetic field, with a high Landau level partially filled by electrons. Our results are
strongly suggestive of a breakdown of translational symmetry and the presence of crystalline order in
the ground state. This is in sharp contrast with the physics of the lowest and first excited Landau levels,
and in good qualitative agreement with earlier Hartree-Fock studies. Experimental implications of our
results are discussed.

PACS numbers: 73.20.Dx, 73.40.Kp, 73.50.Jt
Recently there has been considerable interest in the be-
havior of a two-dimensional (2D) electron gas subject to
a perpendicular magnetic field, when a high Landau level
(LL) (with LL index N $ 2) is partially filled by elec-
trons. This is largely inspired by the recent experimental
discovery [1–3] that the transport properties of the system
are highly anisotropic and nonlinear for LL filling frac-
tion n � 9

2 , 11
2 , 13

2 , . . . . Previously, Hartree-Fock [4–6]
(HF) and variational studies [7] suggested that, unlike the
N � 0 and N � 1 LL’s [in which either incompressible
fractional quantum Hall (FQH) or compressible Fermi-
liquid-like states are realized], in N $ 2 LL’s the elec-
trons form charge density waves (CDW). In particular, at
half-integral filling CDW’s break translational symmetry
only in one direction and form stripes. Anisotropic trans-
port would indeed result from such a striped (or related)
structure [8–11].

We neglect LL mixing, and consider the case where
the LL with index N has partial filling ñ, while LL’s
with lower index are completely filled �n � 2N 1 ñ�. By
particle-hole symmetry of the partially filled LL, this is
equivalent to n � 2N 1 2 2 ñ. We also assume that the
partially filled LL is maximally spin polarized at the ñ we
consider. Previously [12], we studied such N $ 2 LL’s
with ñ � 1

2 by numerically diagonalizing the Hamiltoni-
ans of finite-size systems; those results strongly supported
the existence of stripe order.

An outstanding issue is the nature of the ground state
at high LL’s for fillings sufficiently far from the half-filled
level. Koulakov, Fogler, and Shklovskii [4,5] (see also
Moessner and Chalker [6]) predicted a novel crystalline
phase called the “bubble” phase with more than one elec-
tron per unit cell outside of the range ñ � 0.4 0.6. The
bubble crystal has lower energy than the Laughlin state
for n � 4 1

1
3 [7]. Experimentally, a reentrant quantum

Hall state is found near n � 4 1
1
4 which is quantized

as a n � 4 LL plateau [1–3]. Evidently the electrons in
the topmost LL are frozen out of the transport. Pinning
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of a crystalline structure provides a natural explanation
of the reentrant phase and would further explain the ob-
served threshold in conduction [3]. However, this is not
entirely conclusive, and other mechanisms for the conduc-
tion threshold are also possible [3].

In this paper, we report on new numerical results on sys-
tems away from half-filling using the unscreened Coulomb
interactions. Remarkably, our results suggest that CDW’s
are formed at all filling factors we have studied, including
those that would support prominent FQH states or com-
posite fermion Fermi-liquid states in the lowest or first ex-
cited Landau levels. These CDW’s, however, have 2D
structures and are no longer stripes when the filling fac-
tors are sufficiently far away from 1

2 . They are not Wigner
crystals [13] either, unless ñ is small (below 0.2). In the
intermediate filling factor range, we find each unit cell of
the CDW contains more than one electron. Our results are
in good agreement with the predicted bubble phase and
are the first exact finite-size calculations which exhibit a
crystalline state in a system with continuous translational
symmetry.

We restrict the states of the electrons to a given LL,
and work with periodic boundary conditions (PBC, torus
geometry) as in our previous paper [12]. We also set the
magnetic length to unity. To detect intrinsically preferred
configurations we consider a rectangular PBC unit cell and
vary its aspect ratio. The PBC plays a crucial role in
removing continuous rotational symmetry, and selecting
a discrete set of possible crystal orientations.

In Fig. 1 we plot the energy levels of systems with
Ne � 8 electrons in the N � 2 LL at filling factor ñ � 1

4
as a function of the aspect ratio. We also show the levels of
a system with a hexagonal PBC unit cell at the right side
of Fig. 1. A generic feature of the spectra is the existence
of a large number of low-lying states whose energies are al-
most degenerate, which we call the ground state manifold.
The momenta of these quasidegenerate states for rectangu-
lar geometry with aspect ratio asp � 0.77 and hexagonal
© 2000 The American Physical Society
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FIG. 1. Energy levels versus aspect ratio for quarter-filled
N � 2 Landau level with eight electrons and rectangular
geometry. The inset is a blowup of the low-energy spectra for
aspect ratio between 0.6 and 1.0. The points at 1.1 (open circle
plus x) correspond to hexagonal unit cell.

geometry are shown in Fig. 2; they form a 2D superlattice
structure, which for the rectangular geometry have the su-
percell vectors b1 � 2aêx 2 bêy and b2 � 2bêy , where
a � 2p�L1 and b � 2p�L2. L1 and L2 are the dimen-
sions of the unit cell (L1 3 L2 � 2pNF , NF is the total
flux quanta in the system). The area per wave vector in
the Brillouin zone (BZ) is ab � �2p�2�A, where A is the
(real space) area of the system.

There are similarities as well as important differences
between these spectra and those of half-filled high LL’s
[12] with stripe order. As in the stripe case [12], the large
quasidegeneracy of the ground state manifold is an indica-
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FIG. 2. The allowed (circles) and the ground state manifold
momenta (3’s). The data are for a rectangular geometry with
asp � 0.77, 8 electrons in the N � 2 LL, and ñ � 1

4 . The solid
line is the boundary of the Brillouin zone (BZ). The superlattice
reciprocal basis vectors are shown by solid arrows. The inset
gives the corresponding results for an hexagonal unit cell.
tion of broken translational symmetry [14]. The difference
here is that (i) the degeneracy is much larger and (ii) the
momenta of the low-lying states form 2D instead of 1D
arrays. These new features indicate that the translational
symmetry is broken in both directions and the ground state
is a 2D CDW. In the stripe state, on the other hand,
the translational symmetry is broken only in the direction
perpendicular to the stripes. Therefore the degeneracy is
smaller and the momenta of the low-lying states form a 1D
array.

The momenta of the states in the ground state mani-
fold are the reciprocal lattice vectors of the bubble crys-
tal. Transforming to the direct lattice vectors, we obtain
a1 � p�aêx and a2 � p�2aêx 1 p�bêy . For the op-
timum system, with asp � 0.77, we obtain a1 � 8.08,
a2 � 7.42, and f � 57±. This is very close to a trian-
gular lattice. In the case of the hexagonal PBC unit cell,
both the reciprocal superlattice and its direct lattice are
triangular.

The number ND of distinct quasidegenerate ground
states allows the number Nb of bubbles in the system,
and hence the number M � Ne�Nb of electrons per
bubble, to be immediately obtained through the relation
NbND � N̄2, where N̄ is the highest common divisor of
Ne and NF . In our case, N̄ � Ne � 8, and ND � 16,
which gives Nb � 4 and M � 2 [15]. The Wigner crystal
would correspond to Nb � Ne and M � 1. In general
[16], there are N̄2 distinct values of the total momentum
quantum number, which define a BZ of area �2pN̄�2�A.
If translational symmetry is broken, the area of the BZ
of the superlattice is then �2pN̄�2�AND , which must be
�2p�2��A�Nb�, where A�Nb is the area per bubble; hence
NbND � N̄2.

We next turn to the density response functions. In Fig. 3
we show the projected ground state charge susceptibility
[12] x�q� of one of the optimum rectangular and hexago-
nal systems described above. The calculation takes into ac-
count the contributions from the two lowest energy states
in each symmetry subspace; this is an excellent approxi-
mation in view of the fact that the response function is
dominated by low-energy states because of the energy de-
nominator. We note that x�q� exhibits a strong response at
the reciprocal lattice vectors (Bragg condition); the back-
ground at other wave vectors (shown by 3’s in Fig. 3)
are negligible compared to these responses. The origin
of the strong response lies in the approximate degeneracy
amoung the states forming the ground state manifold. The
system responds very strongly to a potential modulation
with a wave vector that connects the ground state to one
of the low-lying states (which must be a reciprocal lattice
vector) because of the small energy denominator. This is
also another reason why there must be one low-lying state
for each reciprocal lattice vector. A second notable feature
is the almost hexagonal symmetry of the response, despite
the fact that the PBC geometry used in this case was rect-
angular. This indicates that the bubbles tend to form a
5397



VOLUME 85, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 18 DECEMBER 2000
-6 -4 -2 0 2 4 6

-4

-2

0

2

4 qy

qx

-3 0 3

-3

0

3

FIG. 3. A 2D plot of the peaks of the projected (or guiding
center) charge susceptibility x�q� at reciprocal lattice vectors,
for a system with Ne � 8 at ñ � 1

4 , rectangular geometry with
a � 0.77. The size of the circles give an indication of the height
of the peak at that point. Only responses above 100 have been
plotted as solid circles. The zone boundaries are not within the
range of the figure. The largest circle corresponds to 16 491.
The inset gives the results for a hexagonal unit cell. The 3’s
are the allowed wave vectors.

triangular lattice, in agreement with the predictions of HF
theory.

The tendency toward forming a triangular lattice is also
seen in the “guiding center (GC) static structure factor”
S0�q� [12], which we present as a 3D plot in Fig. 4. Here
we see sharp peaks with an approximate sixfold symme-
try at the primary reciprocal lattice vectors, indicating the
presence of strong density correlation at these wave vec-
tors in the ground state.

In Figs. 5 and 6 we plot ground state “projected den-
sity” correlation functions in real space. These describe
correlations relative to the GC (not the coordinate) of
a particle. The first is the Fourier transform (FT) of
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FIG. 4. A 3D plot of the guiding center structure factor S0�q�
(same system as Fig. 3). The signature of the hexagonal lattice
is seen in the near sixfold symmetry of the peaks.
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FIG. 5. Real-space “projected density” (guiding center) corre-
lation function, derived from Fig. 4. A 2D contour plot is also
included below the 3D plot.

S0�q�exp�2q2�2�, which is the electron density of an
equivalent lowest-LL system, and gives information on
the spatial distribution of GC’s. The second is the FT
of S0�q� �LN �q2�2��2exp�2q2�2� with N � 2 (LN is a
Laguerre polynomial): this (plus the uniform density of
the filled LL’s) represents the actual electron density.

In Fig. 5 the presence of four bubbles and the relative
orientation of the bubbles can be clearly seen, and there is
strong crystalline order of the GC distribution. The central
peak contains two electrons, one of which is the particle
with the GC at the origin. For N . 0, as in Fig. 6, only
weak order is displayed by the actual electron density,
because of the averaging effect of the cyclotron motion
around the GC’s. It is the guiding centers of the electrons
that form bubbles as anticipated in Ref. [7] (Fig. 1). The
electrons themselves manage to stay apart to lower the
Coulomb repulsion, in spite of the clustering of their GC’s.

We have also explored other filling factors in the N � 2
LL such as ñ � 2

5 and ñ � 1
3 , where the system would
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FIG. 6. N � 2 Landau level full electron density correlations
(relative to a guiding center), derived from Fig. 4.
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FIG. 7. Spectra of systems with eight electrons at ñ � 1
3 in

the N � 2 LL, with rectangular geometry and various aspect
ratios. The inset plots the momenta of the low-lying states for
asp � 0.75, in the same was as Fig. 2.

condense into prominent FQH states if it was in the low-
est LL; here, however, our studies suggest formation of
CDW’s instead. For ñ � 1

3 we obtain similar behavior to
ñ � 1

4 : the energy spectra as a function of the aspect ratio
shown in Fig. 7 is very similar to Fig. 1 and indicates for-
mation of a 2D CDW. Using the degeneracy of the ground
state manifold, we find the number of electrons per bubble
is also two. The energies of the states in the ground state
manifold, however, are not as close as the ñ � 1

4 . This
results in weaker peaks in x�q� at the reciprocal lattice
vectors.

We interpret this to be an indication that, in this LL, ñ �
1
4 is more favorable than ñ � 1

3 for formation of a two-
electron bubble phase. In real systems a crystal is always
pinned by a disorder potential, and in a nonlinear transport
measurement, there should be a threshold depinning field
at which there is a sharp feature in the I-V curve. A weaker
crystal would result in a more diffuse conduction threshold
as various portions of the crystal get depinned at different
current values, while a stronger one, on the other hand,
will have sharp conduction threshold. This is consistent
with the observation of Cooper et al. [3] that there is a
sharp threshold region at about ñ � 1

4 , but more diffuse
thresholds at both higher and lower ñ.

In contrast to ñ � 1
4 and ñ � 1

3 , the spectra for ñ � 2
5

was found to be very similar to ñ � 1
2 [12]. The momenta

of the low-lying states belong to a 1D array, indicating
formation of a 1D CDW or stripe phase; the weight
of the HF state 11110000001111000000 �Ne � 8�, in
a rectangular geometry with an aspect ratio of 0.80, is
about 65%. We conclude that the transition from stripe
to bubble phases occurs between ñ � 1

3 and ñ � 2
5 , in

qualitative agreement with HF predictions [5,6]. We have
also studied higher LL’s. The results are similar and will
be reported elsewhere.
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