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Damping Mechanism in Dynamic Force Microscopy
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A general theory is presented which describes the damping in dynamic force microscopy due to the
proximity of the surface, consistently with resonant frequency shift effects. Orders of magnitude for
the experimentally measured “dissipation” and image corrugation are reproduced. It is suggested that
the damping does not mainly result from energy dissipation, but arises because not all solutions of the
microlever equation of motion are accessible. The damping is related to the multivalued nature of the
analytical resonance curve, which appears at some critical tip-surface separation.

PACS numbers: 61.16.Ch, 07.79.Lh, 87.64.Dz
Dynamic force microscopy (DFM) is a versatile tool
that is now currently used for studying conducting as well
as insulating surfaces. The basic experimental setup was
mainly designed by Albrecht et al. [1] where a microlever
is used as a resonator for sensing the interaction between
the tip attached to it and the surface. The experimental
demonstration of its usefulness for imaging surfaces at
an atomic scale [2–4] in ultrahigh vacuum has attracted
considerable interest. Despite these impressive technical
advances, the physics underlying its atomic resolution ca-
pability, the imaging contrast in particular, is still not
clearly elucidated. The problem appears to be twofold.
On the one hand, the forces involved greatly depend on
the chemical nature of the sample and tip (sometimes con-
taminated by sample atoms) and also on the shape of the
tip so that a definite and general conclusion is rather diffi-
cult to draw. Besides, the physical meaning of experimen-
tally measured quantities used for imaging is not always
straightforward to interpret. For instance, while the shift
of the microlever resonant frequency is generally accepted
to represent some average of the interaction force [5], the
situation is quite alarming regarding the damping of the
lever due to the proximity of the surface [6–9]. Various
mechanisms by which the lever energy may be dissipated
have been suggested [6,9–11] depending on the strength
and nature of the interaction, and also on mechanical prop-
erties of the surface. Despite this, convincing quantitative
approaches capable of reproducing even orders of magni-
tude of experimentally inferred dissipation have not been
presented yet, presumably indicating that the nature of the
damping in DFM has so far proved elusive.

It may be important to draw a distinction between the
damping and dissipation mechanisms involved in DFM.
While any energy transfer from the tip to the surface would
obviously result in a reduction of the lever oscillation am-
plitude, the existence of damping may not necessarily im-
ply that some dissipative process is involved. First, in
constant amplitude experiments, the energy dissipation is
not directly assessed but inferred by measuring the change
of the driving signal amplitude DAd � Ad 2 A�Q0 (a
measure of the damping) or equivalently the quality fac-
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tor Q � A�Ad through the relation DE � kA�2DAd �
kA2�2�1�Q 2 1�Q0�, where k is the lever spring constant
and A�Q0 the driving amplitude necessary in order to com-
pensate for the intrinsic dissipation. Second, because the
interaction energy is much smaller than that of the lever
(this is reflected in the lever motion which is sinusoidal to
a high degree of accuracy), first-order perturbation theory
can naturally be applied to describe the change in the lever
characteristics, for instance its resonant frequency shift [5].
However, the success of the perturbative approach may
have overwhelmed the fact that for large amplitude opera-
tion, the tip dips into a nonlinear surface potential only for
a relatively short time so that the nature of the dynamical
problem is inherently nonlinear, a “detail” that perhaps has
not been fully appreciated.

In this Letter we propose that the damping in (large am-
plitude) DFM is not mainly a consequence of the action
of some dissipation mechanism but rather results from the
inaccessibility of some solutions of the microlever equa-
tion of motion. This is related to the nonlinearity of the
interaction and to the freely oscillating initial conditions
imposed in real experiments. It is argued that at some
critical tip-surface separation, there is a drastic qualita-
tive change in the analytical resonance curve of the lever
(i.e., it becomes multivalued) which is directly related to
the emergence of additional damping. Three qualitatively
distinct regions of operation are naturally defined within
our theory, namely contact, pseudononcontact, and true
noncontact. An important aspect of our proposal is that
even with a simple model for the interaction force, we can
correctly predict orders of magnitude of the experimen-
tally measured “dissipation” and image corrugation, con-
sistently with the microlever frequency shift.

The physical origin of the microlever damping is inves-
tigated with the basic equation of motion,

ẍ 1 v0�Q0 �x 1 v2
0x � Fd�m 1 Fi�x 1 L��m , (1)

where v0 � 2pf0 �
p

k�m, Q0 are the intrinsic reso-
nant frequency and quality factor of the lever, respectively,
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and L is the mean tip-surface separation. Fd�t� � Adk 3

cos�vt� is the driving force, and Fi is the tip-surface in-
teraction force. It is emphasized that the only dissipa-
tion mechanism included in Eq. (1) is the intrinsic friction,
Fi being conservative. In the following, a simple form for
the force Fi is assumed (LJ type with s � 3 Å, Ebond �
0.25 aJ � 1.56 eV) that mimics the microscopic interac-
tion between the tip and a rigid surface. v0, k, and Q0 have
been assigned the value 106 sec21, 26 N�m, and 24 000,
respectively, so as to reproduce typical experimental con-
ditions. The amplitude at which the lever is to be operated
is taken to be A0 � 15s � 4.5 nm.

We start by finding the steady state solutions of Eq. (1).
By Fourier expanding the interaction force Fi and writing
the lever motion as x � A cos�vt 2 f� [12], the follow-
ing basic relation can easily be obtained:

A �
Adq

�1 2 v2�v
2
0 2 r�A��2 1 1�Q2

0

. (2)

r�A� is some average of the interaction force over one
oscillation period

r�A� �
1

kA2�2
1

2p

Z 2p

0
Fi�x 1 L�A cos�u 2 f� du ,

(3)
with u � vt. Equation (2) is, apart from the term r�A�,
what one should expect for a free harmonic oscillator. Ana-
lytical resonance curves of the lever can be calculated by
inverting Eq. (2),

v � v0

vuut1 2 r�A� 6

sµ
Ad

A

∂2

2
1

Q2
0

. (4)

When the tip is far away from the surface (large L), the
resonance curve has a Lorentzian shape, as depicted in
Fig. 1(a). As the tip-surface separation is reduced, the
curve gets continuously deformed and eventually becomes
multivalued. Figure 1(a) shows an example of such a be-
havior for the separation L � A0 1 2s � 5.1 nm. The
current point of view is that the driving frequency at which
the response of the lever is maximum, i.e., the resonant fre-
quency, is located at the extremity of the needle edge and
corresponds to a frequency shift of Df � 2f0�2r�A0� [5],
as has been pointed out by a few authors [13,14]. Hence
the resonant steady state has an amplitude A0 for a driving
amplitude Ad � A0�Q0; there is no additional damping as-
sociated with the surface DAd � 0.

It is emphasized that the analytical curves described
by Eq. (4) give the amplitude-frequency relation of the
mathematically possible steady state solutions of Eq. (1)
(as long as the lever motion is well described by a sinu-
soid). However, other aspects need to be taken into ac-
count for a proper description of the actual dynamics of
the lever. First, Sasaki et al. [13] have demonstrated that
the states corresponding to the lower part of the needle
edge in Fig. 1(a) are unstable. While stability criteria
and Eq. (4) have been implicitly considered as yielding
a proper description of the basic problem, in this work
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FIG. 1. (a) When the tip is well separated from the surface,
the analytical resonance curve is Lorentzian (i) but for L �
A0 1 2s, it becomes multivalued (ii) with the resonant state
located at (2). (b) Lever oscillation amplitude as the mean
tip-surface separation is adiabatically reduced from infinity to
the separation A0 1 2s. The final state reached is not (2) but
(3). Note that if the tip is brought more rapidly toward the
surface, transient states appear but the final one remains the
same. More thorough numerical simulations suggest that under
normal operating conditions, the accessible resonance curve is
(iii) with resonant state at (1), as shown in (a).

we go a step further. It is well established that the final
steady state of a nonlinear dynamical problem may depend
on the initial conditions of the system [15]. In the case
of DFM, the initial state is not arbitrary; the tip is origi-
nally located away from the surface so that it oscillates
freely. On the other hand, three parameters are changed
dynamically in the course of the approach of the tip to
the surface and also during the scanning. These are the
separation L, the driving signal amplitude Ad, and fre-
quency v. In actual experiments, these parameters are
constantly updated by the electronics. The electronics
generally consist of a feedback loop that keeps the lever
oscillating on its actual resonant frequency, and some regu-
lator which maintains a constant oscillation amplitude.
With this setup, constant amplitude experiments are usu-
ally performed in the following way: As the tip is ap-
proached toward the surface or scanned over the sample
5349
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surface, the driving frequency is automatically adjusted to
the lever actual resonant frequency until the desired fre-
quency shift is reached. The separation L and driving am-
plitude change DAd � Ad 2 A0�Q0 are then recorded and
lead to the so-called topographical and dissipation image
of the surface, respectively. Thus, the freely oscillating
initial steady state and the systematic way the parameters
are modified dynamically may further restrict the lever dy-
namics in real experiments.

It is therefore of prime importance to investigate the ac-
cessibility of the steady state (2) in Fig. 1(a) which has
been considered as the resonant one. In Fig. 1(b), Eq. (1)
has been numerically integrated starting away from the
surface (freely oscillating initial steady state) and modi-
fying the driving frequency according to v � v0�1 2

r�A0, L��2� during the approach. The driving signal am-
plitude is fixed to A0�Q0. The final steady state reached in
this way is not (2) but the one having a lower amplitude at
the same frequency (3). More thorough numerical simula-
tions suggest that the upper side of the needle edge is not
accessible if the lever is initially freely oscillating, inde-
pendently of the way the parameters are brought towards
their final value. If the steady state (2) is not accessible
under these conditions, the notion of “actual resonance”
needs to be revisited. The resonant state would be the
one having the largest amplitude. Its frequency v� coin-
cides with the inflection in the lower branch of the reso-
nance curve but its amplitude is somehow smaller than A0;
in constant amplitude experiments, the driving amplitude
would have been increased in order to keep it at A0. In
other words, some damping DAd fi 0 exists even if there
is no additional dissipation mechanism involved. The ac-
cessible resonance curve with the resonant state at A0 (1)
is also plotted in Fig. 1(a).

In order to properly evaluate the resonant frequency shift
and the damping DAd, one therefore needs to determine the
driving signal amplitude Adr which ensures that the reso-
nant state has an amplitude A0. While the above discussion
has been based on a noncontact example, the argument also
applies to the contact (repulsive interaction) case as well,
as long as the lever motion is still reasonably described
by a sinusoid [12]. Adr can be obtained by solving the
following 2 (nonlinear) master equations (A� is the other
unknown):

6

sµ
Adr

A�

∂2

2
1

Q2
0

D�A�� �

µ
Adr

A�

∂2

, (5)

2r�A0� 6

sµ
Adr

A0

∂2

2
1

Q2
0

� 2r�A��

7

sµ
Adr

A�

∂2

2
1

Q2
0

, (6)

with D�A�� � 2r�A�� 1 g�A��. g�A� is defined as

g�A� �
1

kA2�2
1

2p

Z 2p

0

dFi�x 1 L�
dx

3 A2 cos2�u 2 f� du , (7)
5350
and A� is illustrated in Fig. 1(a). Equation (5) is used
to determine v� and Eq. (6) imposes the condition that
the resonant state must have an amplitude A0. DAd �
Adr 2 A0�Q0 is thus a function of L implicitly through
the quantity r�A� and g�A�. Note that Eq. (5) is valid
for Adr . A��Q0, else Adr � A0�Q0. Also, D�A�� and
therefore DAd vanish for very small amplitude or linear
interaction.

The frequency shift Df [Eq. (4)] and apparent energy
dissipation associated with the damping DE � kA0�
2DAd, are calculated by solving Eqs. (5) and (6) numeri-
cally and are shown in Fig. 2. The upper and lower signs
in Eqs. (4)–(6) are used to calculate the noncontact and
contact branch, respectively, and a close inspection of
the resonance curves around L 2 A0 � s reveals that
there is a small region where no curve has its resonant
state with amplitude A0. The noncontact branch can
be further divided into two regions, namely pseudo and
true noncontact. They differ from each other in that
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FIG. 2. (a) Frequency shift, and (b) apparent energy dissipa-
tion obtained from Eqs. (5) and (6) as a function of the dis-
tance of closest approach. Three regions of operation can be
seen: contact, pseudononcontact, and true noncontact. In (a),
the frequency shift is also compared with the standard theory,
Df � 2f0�2r�A0�. The two curves are identical in the true
noncontact regime. (b) Order of magnitude compares well with
various experiments.
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FIG. 3. Corrugation of the quantity L and DE obtained by
scanning the tip over a one-dimensional surface model with a
defect at constant frequency shift Df � 280 Hz. The corruga-
tions agree well with experiments [8].

the analytical resonance curve in the pseudo-noncontact
region is multivalued as opposed to single valued in the
true noncontact region. The critical separation associated
with the onset of the multivalued behavior (where A�

is no longer equal to A0) is an implicit function of the
interaction force through the quantity r�A� and g�A�. It
corresponds to the maximum separation L where Eq. (5)
admits a solution.

It is remarkable that even with a very simple form for
the interaction force, we are able to reproduce correctly
orders of magnitude of experimentally inferred energy dis-
sipation obtained in very different conditions and samples
[Fig. 2(b)].

For large amplitude operations, the damping mechanism
described in this work is likely to be a dominant effect.
The possibility of achieving true atomic resolution via this
mechanism is briefly examined on a one-dimensional sur-
face model with a defect. Figure 3 shows the result of a
scan at constant frequency shift Df � 280 Hz for both
the quantity L and DE. Note the enhanced and slightly
shifted damping over the atoms next to the defect. These
features and the calculated corrugations agree well with
experiments [8].

In summary, it is argued that the additional damping ef-
fects in DFM do not mainly result from energy dissipation,
but arise because not all solutions of Eq. (1) are accessible.
We are able to reproduce orders of magnitude of experi-
mentally measured “dissipation” in various conditions of
operation and their image corrugation. The damping is
found to be related to the multivalued nature of the analyti-
cal resonance curve. We have obtained some numerical in-
dications that the proposal made here is consistent with a
phase locked at 90±. More theoretical work is, however,
necessary in order to clearly establish how such a relation-
ship may arise.
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