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A novel mechanism is proposed for the generation of self-similar structure over a limited range of
length scales. Our mechanism, which we call the monitor-outside-a-monitor effect, comprises repeated
magnification and addition of small-scale structure. We invoke this mechanism to explain recent obser-
vations of fractal structure in the eigenmodes of unstable optical resonators [G. P. Karman et al., Nature
(London) 402, 138 (1999)].

PACS numbers: 42.65.Sf, 05.45.Df, 42.60.Jf
I. Introduction.—Recent computer simulations have
shown that intensity cross sections through the lowest-loss
eigenmodes of canonical unstable laser resonators are
fractals [1–3]. Self-similar fractal structure was also
shown to be present in noncanonical resonators specifi-
cally designed to have fractal eigenmodes [4].

That the eigenmodes of canonical resonators possess
fractal structure was an exciting find. It was supported
by both evidence from box counting and an outline for
a possible explanation: A round-trip through an unstable
canonical resonator magnifies (i.e., stretches) a light beam.
But as eigenmodes are unchanged after one round-trip,
the eigenmodes of unstable canonical resonators must be
magnified copies of themselves, i.e., fractals.

The details of this mechanism were left unclear; instead
it was pointed out that the detailed patterns arise from
complex processes that have to be tackled with numerical
techniques [1]. In this paper we describe a new mechanism
for generating fractal structure and apply it to explain in
detail how fractal structure arises in the eigenmodes of
unstable resonators. Because of its parallels with video
feedback we call this mechanism the monitor-outside-a-
monitor effect.

II. Monitor-inside-a-monitor effect and monitor-
outside-a-monitor effect.—Pointing a video camera at
the monitor that displays the currently recorded image
causes video feedback (for a good overview, see Ref. [5]).
Figure 1 sketches the first four iterations of the monitor-
inside-a-monitor effect, a well-known video-feedback
phenomenon that occurs when the overall magnification
of the camera-monitor combination, M, is chosen such
that the monitor displays a demagnified image of itself,
i.e., when jMj , 1.

In the case jMj . 1 nothing interesting appears to
happen; the central section of the screen simply gets mag-
nified until it fills the entire screen. However, if the
resolution of the imaging system is high enough to resolve
the grid of individual pixels, this periodic array of small
structures is repeatedly imprinted on the pattern. From
this small structure the magnification in the system succes-
sively forms structures M, M2, M3, . . . times larger than
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the original structure, while fresh small structure is re-
peatedly added. We call this effect the monitor-outside-a-
monitor effect. Whereas the monitor-inside-a-monitor
effect starts with large structures and adds smaller and
smaller structures, the monitor-outside-a-monitor effect
starts with small structures and adds successively larger
structures.

In this paper we concentrate on a simplified description
of the monitor-outside-a-monitor effect in one dimension,
which iteratively stretches functions and adds to the result a
periodic (or almost periodic) pixel function, p�x�. Starting
with a function f0�x� � 0, the function fn�x� resulting
from n iterations is the sum of the pixel function, the pixel
function stretched by M, the pixel function stretched by
M2, and so on up to the pixel function stretched by Mn21,
so [6]

fn�x� �
n21X
i�0

p

µ
x

Mi

∂
. (1)

This equation describes both the monitor-inside-a-monitor
effect and the monitor-outside-a-monitor effect, the former
for jMj , 1, the latter for jMj . 1. It describes functions
that are very closely related to Weierstrass functions [7,8],
the first example of functions that cannot be differentiated
at any point.

Figure 2 shows the monitor-outside-a-monitor effect at
work with a one-dimensional, periodic, pixel function,
p�x� � 2 cos�px�w�. This simple function, which con-
tains only structures of one size, w, is successively turned
into a complex pattern, any part of which contains struc-
tures of sizes w, Mw, M2w, . . . . This property is a hall-
mark of fractals.

FIG. 1. Patterns generated by n iterations of the monitor-
inside-a-monitor effect. In this example the magnification factor
is M � 1�2.
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FIG. 2. Function fn�x� resulting from n iterations of the one-
dimensional monitor-outside-a-monitor effect with a magnifica-
tion M � 2 and a pixel function p�x� � 2 cos�px�w�. The
sizes contained within f4�x� are indicated in multiples of the
structure size w in the pixel function.

Clearly the patterns generated by the monitor-outside-a-
monitor effect are not mathematical, i.e., perfect, fractals,
as they contain no structures smaller than s. They do, how-
ever, contain self-similar structure over a finite range of
length scales, just like all physical fractals, i.e., fractals that
actually occur in the natural world [9,10]. The following
section explores how the monitor-outside-a-monitor effect
shapes the light in unstable canonical resonators into such
physical fractals.

III. Monitor-outside-a-monitor-effect in unstable ca-
nonical resonators.— In unstable canonical resonators
planes exist that are imaged onto themselves after one
round-trip through the resonator. These self-conjugate
planes can be real or virtual and can even be located
outside the resonator. For each self-conjugate plane
that is imaged onto itself with magnification M, another
self-conjugate plane (corresponding to light traveling in
the opposite direction) exists that is imaged onto itself
with magnification 1�M.

Throughout this paper one-dimensional confocal reso-
nators of the type shown in Fig. 3 are used as convenient
examples of canonical resonators. The self-conjugate focal

FIG. 3. Confocal resonator (a), its unfolded lens-guide equiv-
alent (b), and imaging of the self-conjugate planes in the lens-
guide equivalent (c). The left mirror (corresponding to lens L1)
has a hard-edged aperture of half-width r; the right mirror has
no aperture. The plane of the common focus, F, unfolds into
the two self-conjugate planes SM and S1�M . A second pair of
self-conjugate planes is virtual and located at 6`.
plane with associated magnification M of modulus jMj . 1
will be referred to as SM ; the other self-conjugate focal
plane, which has an associated magnification of 1�M, is
called S1�M .

We note that the existence of these self-conjugate planes
immediately explains two important properties of unstable
resonators: First, the beam cross section in the plane SM

is magnified upon each round-trip through the resonator
until the beam is so large that its edges are clipped by
the aperture. It is this mechanism that makes unstable
resonators lossy. Second, the beam cross section in the
plane S1�M is demagnified upon each round-trip until it
is essentially a diffraction-limited point. In a ray-optical
picture, every light ray passes through this point. Wave-
optically, this point is at the focus of the approximately
spherical phase fronts that characterize the eigenmodes of
unstable resonators [11].

Apertures in unstable resonators do not only lead to loss;
they also modify the small-scale structure of the part of the
beam that passes through the aperture. To develop a model
for the combination of this effect of the aperture and the
magnification of the beam in the plane SM , we consider a
uniform amplitude distribution in the plane SM . After one
round-trip through the resonator, the amplitude distribution
can be described as the sum of an oscillating part, p�x�, and
a dc offset [Fig. 4(a)]. During the next round-trip the os-
cillating part is simply stretched by a factor M [Fig. 4(b)],
while the dc offset is turned into p�x� and a new dc offset,
so the amplitude distribution is now the sum of a dc offset,
and a structure part, s�x�, which is the sum of p�x� and
p�x�M�. Just as in the case of p�x� we choose to neglect
the effect of the aperture on the structure part, an approxi-
mation that is justified by the accuracy of our model as
described below. It follows that, starting with a uni-
form amplitude distribution in the plane SM , the structure
of the amplitude distribution after n round-trips can be

FIG. 4. Simplified description of the effect of round-trips
(RTs) through the resonator on an initially uniform amplitude
distribution in the plane SM . (a) The diffraction pattern after
one round-trip can be described as the sum of an oscillating
part, p�x�, and another uniform amplitude distribution. (b) The
oscillating part is simply stretched by a factor M.
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FIG. 5. Amplitude distributions over the central 0.47 mm in
plane SM in a beam passing trough a canonical resonator, simu-
lated using a beam-propagation algorithm and the monitor-
outside-a-monitor effect. The parameters of the resonator
are f1 � 20 mm, f2 � 40 mm (leading to a magnification
M � 22), and r � 2.65 mm, corresponding to a Fresnel num-
ber of N � 92.5. n is the number of round-trips; after n � 20
the beam cross section is essentially that of the eigenmode.

approximated as the result of n iterations of the monitor-
outside-a-monitor effect with magnification M and pixel
function p�x�.

A number of more subtle points still have to be taken
into account. First, the new structure part is stated to
be the sum of p�x� and p�x�, stretched by a factor M;
this is true only if the phases of these two parts are the
same (so that their amplitudes simply add up), which, to a
good approximation, is the case for beams with the eigen-
mode’s phase structure. Consequently the pixel function
p�x� is the diffraction pattern resulting from a uniform am-
plitude distribution in the plane SM with the eigenmode’s
phase distribution. Second, in order to conserve power in
the beam, as both parts of the amplitude distribution get
stretched by a factor M, their individual amplitudes are re-
duced by a factor of 1�

p
jMj. The structure part of the

amplitude distribution after n round-trips can be written as

sn�x� �
n21X
i�0

p� x
Mi �p

jMjn
. (2)

Obviously, as this mechanism does not take into account
the clipping by the aperture of the stretched structural part,
Eq. (2) is valid only for the central part of the beam that
has not been clipped by the aperture.

To evaluate the accuracy of this proposed mechanism,
we compare the amplitude distributions calculated with the
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FIG. 6. Center of the amplitude distribution in the plane SM of
the eigenmode of the resonator from Fig. 5, shown with differ-
ent magnifications and calculated using two different algorithms.
The top graphs correspond to a width of 15 mm; the patterns
shown for magnification 332 are the same as those shown for
n � 20 in Fig. 5. Note the similarity of the cross section un-
der different magnifications, which demonstrates the diffraction-
limited self-similarity of the pattern.

help of the monitor-outside-a-monitor effect to those cal-
culated with a traditional beam-propagation method. We
initialize the beam-propagation method with a beam cross
section in the plane SM of uniform amplitude and the phase
structure of the resonator’s eigenmode and trace the cor-
responding beam through the resonator, using a Fourier
algorithm [12] to model free-space propagation and mul-
tiplication with appropriate phase factors to represent the
effect of lenses [13]. An array of 32 768 complex numbers
was used to represent the amplitude of a light beam of
wavelength l � 633 nm over a physical width of 30 mm.
The calculated amplitude distribution in the plane SM after
one round-trip was taken as the pixel function p�x� for the
monitor-outside-a-monitor effect. Figures 5 and 6 show
the detailed structure after n � 1, 2, 3, . . . round-trips and
the structure under magnification of the eigenmode of a
confocal resonator, respectively; Fig. 7 shows the detailed
structure in the eigenmodes of some other resonators. In
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FIG. 7. Amplitude cross sections in the plane SM through the
eigenmodes of various resonators, calculated using a beam-
propagation algorithm and the monitor-outside-a-monitor effect.
(a) Confocal resonator, f1 � 20 mm, f2 � 30 mm (so M �
21.5), r � 3.56 mm; (b) confocal resonator, f1 � 20 mm,
f2 � 40 mm (so M � 22), r � 2.76 mm; (c) nonconfocal
resonator, left mirror with focal length f � 20 mm and aper-
ture radius r � 2.76 mm; plane right mirror without aperture,
separation between mirrors 53.33 mm, leading to M � 23.

every case, the agreement between the output from the two
methods is so good that they are hard to distinguish.

The reader should be aware of an important limitation of
our mechanism. One of the assumptions of this mechanism
is that the structural part of a light beam is simply stretched
(and clipped at the edges) during a round-trip through the
resonator. To a good approximation, this assumption is
justified in resonators with high Fresnel numbers, as in the
examples presented in Figs. 5 and 6, all of which were cal-
culated for N � 100. However, the assumption is not jus-
tified in resonators with lower Fresnel numbers (N � 1);
as a consequence, the monitor-outside-a-monitor effect
yields inaccurate results for such resonators.

Clearly the monitor-outside-a-monitor effect explains in
detail the eigenmode structure in the self-conjugate plane
SM . How about the other, non-self-conjugate, planes?
These planes are not geometrically imaged onto them-
selves, and it is during this imaging that the important
stretching of the beam’s structure occurs. On the other
hand, a basic ray-optical picture of an unstable resonator’s
eigenmode, in which every light ray passes through the
high-intensity spot in the plane S1�M , predicts stretching
by a factor of M of the beam in every plane [1,11]. A more
careful analysis reveals that the small structure in the beam
becomes distorted as well as stretched. As the monitor-
outside-a-monitor effect involves perfect stretching, it pre-
dicts a pattern with the wrong detail but approximately the
correct statistical fractal behavior. It can therefore explain
the general fractal character of the eigenmode cross sec-
tions reported in unstable resonators [1–3].

IV. Conclusions.—We have proposed a new mechanism
for the generation of fractal structure over a limited range
of length scales. We call this mechanism the monitor-
outside-a-monitor effect.

Although the processes responsible for shaping the
eigenmode in unstable resonators are very complex, the
simple monitor-outside-a-monitor effect predicts fractal
eigenmode structure in particular planes very accurately.
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