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Hierarchy of Local Minimum Solutions of Heisenberg’s Uncertainty Principle
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We derive a new hierarchy of local minimum Heisenberg-uncertainty states by introducing a super-
position of “small waves” onto some initial state. Our objective is to increase the resolution in one
observable, with the least decrease in the resolution in the conjugate observable. This leads to a con-
strained minimization which in a well-defined sense yields the best possible way of achieving this goal.
The results are relevant to many topics (e.g., quantum optics and control, Bose-Einstein condensation,
path integration, etc.).
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I. Introduction.—At the heart of the difference between
quantum and classical mechanics is the noncommutativ-
ity of conjugate observables, which leads to the Heisen-
berg uncertainty principle [1,2]. It states that one cannot
specify, simultaneously, exact values (eigenvalues) of a
pair of noncommuting observables (e.g., position and mo-
mentum) and places quantitative restrictions on their rela-
tive variances. The essential origin of this principle is that
quantum mechanics possesses the mathematical structure
of a linear vector space (viz., a Hilbert space) [3]. The
transformation between, e.g., the position representation
of the vector space and the canonically conjugate momen-
tum representation is simply a Fourier transform [3]. The
usual derivation of the uncertainty principle makes use of
Schwarz’s inequality [1,2], yielding

�cjbx2jc� �cjbp2
x jc� $ j�cjbxbpx jc�j2. (1)

Here �c jc� � 1, and bx and bpx are conjugate position
and momentum operators, with zero expectation values
assumed for convenience. (Nonzero expectation values
are discussed elsewhere [4,5].) Relating �cjbxbpxjc� to the
average of the commutator �bx, bpx� is a textbook exercise
[1]. The equality is satisfied whenµ bx

s
1

isbpx

h̄

∂
jc� �

µ bx
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1 isbk∂
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and the solution of this equation has a minimum uncer-
tainty product. Here s, in general, is complex [1,2],

h̄bk � bpx , and bx
s and sbpx

h̄ are dimensionless. Obviously

�bx
s 1

isbpx

h̄ � � �bx
s 1 isbk� is an annihilation operator and

the solution to Eq. (2) is the vacuum state [2,6], i.e., a
Gaussian in both the position and the momentum repre-
sentations. Though there are many specific realizations of
the Gaussian, e.g., coherent states and squeezed states, all
are captured by a single function (of a dimensionless vari-
able, j � k2s2�2) solving

i
dc

dk
1 is2kc �

dc

dj
1 c � 0 . (3)

All Gaussians are then members of a family of “corre-
sponding states,” with different s values but the same
uncertainty.

Now all phenomena governed by similar mathematics
will be subject to some form of uncertainty principle, and
the range of such phenomena is vast [7–23]. The uncer-
tainty principle imposes fundamental limitations on the
“bandwidth” and “duration” of signals used to manipulate,
transfer, capture, extract, etc., information, and is thus
relevant in many important technologies. One example
is quantum optics [9,17–23]. Here attention centers on
Gaussian light pulses with (1) the minimum uncertainty
product and (2) a squeezed variance in one or the other
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observable so that the uncertainty is not equally shared.
The general problem of localizing photon packets in both
physical and Fourier spaces has yet to be solved
completely.

The mathematics of Fourier and harmonic analysis also
underlie signal processing and communications, and the
general problems of constructing and analyzing signals
that are sufficiently sharply defined, both in physical and
Fourier domains, are of fundamental importance. Major
efforts over the past 15 years have focused on the so-called
“little wave” or “wavelet” revolution [11,24–27]. The ba-
sic idea is to “filter” the usual plane waves of Fourier
analysis, exp�ikx�, by weighting them with some localized
function. Usually the weight function has rapid decay in
both the x and k domains. A widely used example is the
Gaussian weight; one realization is the coherent state [28].
This decomposes a signal (state) into separate pieces which
are themselves (approximately) localized in k and x. The
signal (state) is typically localized into separate low band-
pass and one or more high bandpass chunks, each of whose
Fourier transform is also localized. Alternatively, the full
signal (state) can be generated by an appropriate superpo-
sition of such chunks (i.e., the procedure can be carried out
in either direction). This idea of parsing a signal into such
chunks is called a “multiresolution analysis.” (Our discus-
sion has, perforce, been qualitative; rigorous formulations
abound in the mathematics literature [7,8,11–13,24–27].)
Of course, the Heisenberg uncertainty principle applies
throughout, so that if one increases the x localization by
superposing some initial wave c , with another small wave
or wavelet, dc, then typically the resulting new wave is
more delocalized in k. A fundamental question is how can
this process be optimized? The objective of this paper is
to show how one can obtain a multiresolution realization of
Heisenberg’s uncertainty. We shall see that in doing this,
we obtain a new hierarchy of locally minimal-uncertainty
states. Of course, one approach to the problem of “squeez-
ing,” say, x at the cost of delocalizing in k is via the Gauss-
ian. However, this limits the overall pulse or signal (state)
to a fixed form.

The fundamental issue, thus, reduces to the following
question: Is there a realization of the uncertainty prin-
ciple incorporating multiresolution? In another paper, we
discuss the following intimately related question: Is there
a generalization of the Gaussian family of functions [5]?
The relationship between these two questions rests on the

point of view that Eq. (2) serves to define Gaussians [1,2].
This paper is organized as follows. We consider the

analysis by which the minimum uncertainty is derived and
show how to combine it with the multiresolution idea. This
leads to a hierarchy of local-minimum uncertainty dis-
tributed approximating functions and a related hierarchy of
“m wavelets,” whose properties are briefly discussed. It is
shown that the absolute minimum Heisenberg-uncertainty
state results from an appropriate limit of the hierarchy ob-
tained using the local-minimum uncertainty condition.
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II. Combining the uncertainty and multiresolution con-
ditions.—For reasons that will become apparent, it is con-
venient to consider state vectors that are not normalized
in the usual sense, but instead satisfy the condition that
�k jc� equals one at the k value of zero. Then the unit
normalized ket vector is jc��N , N2 � �c jc�. Since the
momentum representation wave function, �k jc�, obeying
the above condition, is dimensionless, it depends only on
dimensionless variable combinations. We restrict our con-
sideration to the case where there is only a single parame-
ter, s, with dimensions of length, so in the wave number
representation the wave function depends only on the di-
mensionless combination ks. As a function of k, the wave
functions generated by different values of s form a fam-
ily of corresponding states. We now modify a given initial
state vector to create a new state,

jcn� � jcn21� 1 jdcn� , (4)

where jdcn� denotes the modifying vector. Initially jdcn�
is subject only to two conditions: (a) that it satisfies an
“admissibility” requirement [25], [26], and (b) that it in-
crementally increases the x (or k, if one so chooses) reso-
lution of jcn21�. The first condition states that

�k jdcn� � 0, k � 0 (5)

(guaranteeing that �k jcn� � �k jcn21� � 1 at k � 0).
Thus, Z `

2`
dx�x jdcn� � 0 . (6)

This condition provides an intuitive, commonly used defi-
nition of a wavelet (little wave) [8]; we shall denote our
jdcn� as a wavelet. However, see Ref. [26] for a pre-
cise discussion of admissibility and wavelets. The second
condition usually results in an increase in the uncertainty
product. However, for certain choices of initial state, it is
possible to increase the resolution in x, while at the same
time decreasing the overall uncertainty product.

The uncertainty product for x and k in state jcn� is given
by

D2
n � �Dx�2

n�Dk�2
n , (7)

where

�Dx�2
n �

�cnjbx2jcn�
N2

n
, �Dk�2

n �
�cnjbk2jcn�

N2
n

. (8)

Note that varying jdcn� to minimize D2
n subject to Eq. (5)

merely forces jcn� to be the absolute minimum uncertainty
state. Thus, �k jdcn� given by exp�2j� 2 �k jcn21� sat-
isfies Eq. (5), but for this choice �k jcn� is identically the
minimum-uncertainty Gaussian. Our goal is to squeeze the
x variance of the initial state by minimally increasing its
k variance, not to make a total replacement of jcn21�. To
accomplish our aim requires a modification of the varia-
tional procedure, which will allow us to identify local
minima consistent with condition (b).
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To squeeze the dispersion in x at the expense of broad-
ening it in k, we begin by writing the uncertainty product
in the nonsymmetric form

D2
n � �Dx�2

n	��Dk�2
n�0 1 ��Dk�2

n�1
 , (9)

where

��Dk�2
n�0 � N22

n 	�cn21jbk2jcn21� 1 2 Re�cn21jbk2jdcn�

(10)

and

��Dk�2
n�1 � N22

n �dcnjbk2jdcn� . (11)

We could reverse the roles of x and k if we should so
choose. The direct term, ��Dk�2

n�1, in the k variance is
never negative and therefore gives an intrinsically positive
contribution. It results from effectively extending the fre-
quency range of the state. The term ��Dk�2

n�0 (which is
not necessarily positive) contains the remainder of the k
variance.

In order to guarantee satisfaction of condition (b) (re-
quiring that the wavelet incrementally increase resolution),
we hold the quantity �D2

n�0 � �Dx�2
n��Dk�2

n�0 fixed. Since
��Dk�2

n�1 is non-negative, according to Eq. (9), the fixed
value of �D2

n�0 provides a floor under which the uncer-
tainty product cannot go. The value of �D2

n�0 is not known
a priori, but will be subsequently determined. We seek
to minimize the uncertainty product with respect to varia-
tions of the wavelet, jdcn��Nn, by minimizing ��Dk�2

n�.
The choice of �D2

n�0 parametrizes a family of constrained
minima; the state of absolute minimum uncertainty lies
within this family. Using the Schwarz inequality,

D2
n $ �D2

n�01

Ç Ω
1

Nn
�cn j bx
 	bk jdcn�

1
Nn

æ Ç2
. (12)

Except for the trivial case jdcn� � 0, the equality in
Eq. (12) clearly holds only when bxjcn��Nn is proportional
to bkjdcn��Nn. This gives constrained local minima con-
sistent with condition (b) (however, not all minima satisfy
this relationship; see [4] for an expanded discussion). In
the k representation the resulting equation is

2
1

�s0�2

≠cn

≠k
� k�cn 2 cn21� � kfn , (13)

where s0 is a constant and fn is the k representation of
the wavelet. It is apparent that if cn21 obeys a law of
corresponding states in terms of the dimensionless variable

j � k2s2

2 , then so also will cn if and only if s0 � s.
Equation (13) then becomes

2
≠cn

≠j
� fn . (14)

Solutions of this equation are determined by the constant
of integration and cn21, which in turn uniquely determine
fn. In contrast to Eq. (2), this equation gives rise to local
relative minimum uncertainties, constrained by the floor,
�D2
n�0. The general solution to this linear, first order, inho-

mogeneous differential equation is

cn�j� � be2j 1
Z j

0
dj0 e2�j2j0�cn21�j0� , (15)

where b is the constant of integration, given by

b � cn�j � 0� . (16)

Clearly for limj!`cn�j� � 0 to hold, we must require that
Re�s2� . 0. However, subject to this, the constant s2

can be complex. In this paper we will deal only with real
s2 [4].

When there is only one dimensionless variable, it is
straightforward to show that D2

n is independent of s be-
cause x and k are conjugate variables. However, D2

n does
depend on b, as we now consider. First, it is easily proved
that the normalized state vector jcn��Nn behaves accord-
ing to

lim
b!`

�k jcn�
Nn

�
s

p
2p

e2s2k2�2 (17)

in the infinite-b limit (cn21 ø dcn), and �D2
n�0 � 0.

That is, in the general case when b ¿ 1, the relative mini-
mum uncertainty state cn�k� becomes a Gaussian. Thus,
the absolute minimum uncertainty state is pushed to the
b ! ` limit by the reformulation to a constrained mini-
mization. However, finite values of b give rise to states of
relative minimum uncertainty, provided cn21�j� fi 0. [If
cn21�j� � 0, Eqs. (14) and (3) are identical, and satisfied
by the Gaussian.]

We now impose the admissibility requirement, condition
(a). According to Eq. (15) this requires that we set b � 1
independent of n to obtain

cn�j� � e2j 1
Z j

0
dj0 e2�j2j0�cn21�j0� . (18)

For a given cn21, this uniquely fixes �D2
n�0. The extent

to which this minimum-uncertainty procedure improves
resolution depends on cn21�j�. A natural starting point,
in analogy to the eigenvectors of the annihilation opera-
tor, is to begin with c21�j� � 0; then Eq. (18) uniquely
yields the Hermite distributed approximating functionals
(HDAF) [29–35]:

cn�j� � e2j
nX

j�0

jj

j!
, (19)

or, replacing j by s2k2�2,

cn�k� � e2s2k2�2
nX

j�0

µ
s2k2

2

∂j

�j! . (20)

We note that the starting HDAF, c0�j�, is the absolute
minimum uncertainty Gaussian. The sense of the op-
timization is that cn�k� gives the smallest possible in-
crease in the variance Dk when Dx is squeezed from

its �n 2 1� value by adding exp�2s2k2

2 �� s2k2

2 �n�n! to the
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HDAF cn21�k� for a value of �D2
n�0 determined by the ad-

missibility requirement.
Starting with an arbitrary initial state, c0�j�, we can

build up a more highly squeezed state sequentially by
adding m wavelets, where each addition is done with mini-
mum uncertainty as discussed. We refer to the set of
wavelets thus generated as a wavelet family. It is readily
seen that each member of such a family obeys [Eq. (13)]

2
≠fn

≠j
� fn 2 fn21 , (21)

which has the solution

fn�j� �
Z j

0
dj0 e2�j2j0�fn21�j0� , (22)

obeying the admissibility requirement. It should be pointed
out that while the uncertainty at each step is independent of
s, it does depend on n. As we have discussed, this must be
the case if the m wavelets are to generate a multiresolution
hierarchy. Integrating Eq. (14) and making use of the fact
that cn�j � 0� � 1, we have that

cn �
Z `

0
dj fn�j� � 1 (23)

and hence cn is independent of n for every member of the
wavelet family. For the HDAFs of Eq. (20), the m wavelets
are

fn�j� � e2j jn

n!
�

e2�s2k2��2

n!

µ
s2k2

2

∂n

. (24)

The asymptotic (large n) behavior of the m wavelets is
determined by a “diffusion equation” for a source traveling
at a constant “velocity,”

≠fn

≠n
� 2

≠fn

≠j
1

1
2

≠2fn

≠j2 , (25)

where n plays a “timelike” role [4]. For large n,

fn�j� !
1

p
2pn

e2�j2n�2�2n, (26)

which is the diffusion profile of an initial delta-function
source. It can also be shown from this result that the
large n profiles of the leading edges of cn as a function
of k are independent of n [4]. Finally, the large n asymp-
totic dependence of the uncertainty product Dn scales like
n1�4. This compares, for example, to the harmonic oscil-
lator states for which DHO,n � n 1

1
2 . The uncertainty

product of the n . 0 HDAF states is smaller than for the
corresponding harmonic oscillator states [35].

In conclusion, we expect the m wavelets and HDAFs
to be useful for experimentally creating new, optimal
squeezed states. Such packets should be of use in quantum
optics applications and for Bose-Einstein condensates.
One specific possibility is the creation of light pulses
that are as close as possible to an ideal square pulse.
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This could be useful for communications and for high
precision measurements. Additionally, the ability to shape
coherent light pulses more precisely may be of use in
quantum computing. Another application could be for
optimally confining atomic and molecular systems at low
temperatures.

Just as coherent states are useful for semiclassical dy-
namics, by making use of their dependence on the con-
tinuously variable complex eigenvalues of the annihilation
operator, so also HDAFs and m wavelets vary with the
analogous parameter, s. It may be possible to use HDAFs
to write path integrals in phase space and obtain new semi-
classical expressions that contain the parameter n. These
and other areas of potential application are currently under
study.
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