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Scaling Law of Resistance Fluctuations in Stationary Random Resistor Networks
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In a random resistor network we consider the simultaneous evolution of two competing random pro-
cesses consisting in breaking and recovering the elementary resistors with probabilities WD and WR .
The condition WR . WD��1 1 WD� leads to a stationary state, while in the opposite case, the broken
resistor fraction reaches the percolation threshold pc. We study the resistance noise of this system un-
der stationary conditions by Monte Carlo simulations. The variance of resistance fluctuations �dR2� is
found to follow a scaling law jp 2 pcj

2k0 with k0 � 5.5. The proposed model relates quantitatively
the defectiveness of a disordered media with its electrical and excess-noise characteristics.

PACS numbers: 85.40.Qx, 05.40.Ca, 68.35.Rh, 72.70.+m
Random resistor networks (RRN) have proven to be a
useful model of electronic transport through disordered
media [1–13]. To this purpose, several percolation
approaches have been applied to RRNs to investigate
complex interactions where structural or electronic re-
arrangements modify the properties of the system under
investigation. Examples include biological systems [2],
electronic transport in composite materials [2,14], amor-
phous and crystalline semiconductors [2,15], or break-
down of electrical properties [2,14]. Recently, degradation
toward failure has been addressed successfully with
standard and biased percolation models [16,17].

In this Letter we study a stationary percolation regime
of a RRN by focusing on the resistance noise properties.
To this purpose, we consider a RRN where two com-
peting processes, defect generation and defect recovery,
take place randomly. These two processes result from
spontaneous breaking, occurring with probability WD , and
recovery with probability WR , of elemental network re-
sistors. As such, they are modeled as two standard per-
colations which evolve in competition. In particular, the
two competing mechanisms of breaking and recovery we
have introduced can have several physical mechanisms as
counterpart. Some illustrative examples are the following:
(i) the productions of voids and their healing due to the ac-
cumulation of mechanical stress in electromigration phe-
nomena [18–20]; (ii) generation-recombination models of
carriers between bands and/or from band to localized states
in semiconductors [15,21–24]; (iii) carrier-number fluc-
tuations produced by tunneling or hopping conduction in
composite materials [13,14]; (iv) charge trapping and de-
trapping involved in soft dielectric breakdown of ultrathin
dielectrics [18,20,25]. Here we limit our study to the in-
trinsic property of the RRN. Accordingly, the applied
current plays no other role besides that of enabling us to
evaluate the network resistance within linear response the-
ory. Monte Carlo (MC) simulations are performed to ex-
plore the network evolution as a function of the two model
parameters: the probabilities WD and WR . In the presence
of recovery two possible asymptotic evolutions are ex-
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pected, namely, (i) failure and (ii) steady state. The case of
failure, by leading to divergence of the network resistance,
is appropriate to study the electrical breakdown of thin
films [1,2,14,16,17,26]. The case of steady state, by lead-
ing to fluctuations of the network resistance, is proposed as
a new percolative approach able to model resistance fluc-
tuations associated with structural defects [5–26].

The RRN consists of a two-dimensional square-lattice
network of resistors of resistance ra . We take a square
geometry N 3 N where N determines the linear sizes of
the lattice and Ntot � 2N2 is the total number of resistors.
In practical applications, concerning the study of the elec-
trical noise of thin films, the value of N can be related to
the ratio between the size of the sample and that of the
characteristic grain. The electrical contacts are realized by
perfectly conducting bars at the left- and right-hand sides
of the network, through which a constant current I is ap-
plied. The network resistance is thus given by [1]

R �
1
I2

X
i2
ara , (1)

where ia is the current flowing in the ra resistor and the
sum is extended to Ntot. Starting from a perfect network,
where all the resistors have the same resistance r0, we
create defects by changing the resistances ra to the value
rD � 109r0, according to the probability WD . Defects are
then recovered with probability WR . The sequence, defect
creation and defect recovery, is then iterated, until a steady
state or the percolation threshold is reached, as specified
later. The ensemble average value of defects at the nth
iteration, p̄n, is found to be given by

p̄n � WD�1 2 WR�
1 2 ��1 2 WD� �1 2 WR��n

1 2 �1 2 WD� �1 2 WR�
. (2)

We notice that if limn!`p̄n � pc the connectivity of the
network is broken and R diverges, while if limn!`p̄n ,

pc a steady state is reached. As here we will essentially
focus on the steady state, for the sake of brevity we denote
© 2000 The American Physical Society
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limn!`p̄n simply by p, thus

lim
n!`

p̄n � p �
WD�1 2 WR�

WR 1 WD�1 2 WR�
, (3)

where p also gives the average value of pn under stationary
conditions. Since in a two-dimensional square-lattice [1]
pc � 0.5, from Eq. (3), stationarity implies

WR . WD��1 1 WD� . (4)

It is convenient to define x as the steady state value of the
ratio between the numbers of broken and unbroken resis-
tors, and x thus represents an effective breaking probability
which determines p:

x �
p

1 2 p
�

WD�1 2 WR�
WR

, (5)

which implies p � x��1 1 x�.
To investigate the intrinsic resistance noise, we carried

out MC simulations using networks with linear size N up
to 120. Starting from the perfect lattice with resistance
R0 � r0�N��N 1 1�� (step zero), defects are generated
with probability WD and recovered with probability WR .
By solving Kirchhoff loop equations the currents ia and
the resistance R are calculated (step 1). This procedure is
iterated until the two following possibilities are achieved:
(i) defect percolation threshold or (ii) steady state condition
(in this case the iteration runs long enough for correlation
and fluctuation analyis to be carried out). The network
evolution as a function of the number of iterations can be
associated with a time evolution, once that time is mea-
sured in units of iteration step. If not stated otherwise, for
the simulations we used the following parameter values:
N � 75, r0 � 1 �V�, I � 0.1 (A), WD � 3.35 3 1024

while several values of WR are considered.
Figure 1 reports pn versus the iteration step (time).

For decreasing values of WR the RRN is found to evolve
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FIG. 1. Evolution of the fraction of broken resistors pn as a
function of the iteration step n. Symbols refer to MC simulations
for a single realization and continuous lines to the ensemble
average values obtained from Eq. (2).
from a steady state toward failure. Figure 2 reports p
as a function of the effective breaking probability x. We
can see that at increasing values of x the fraction of de-
fect corresponding to the steady state increases as pre-
dicted by Eq. (3). The excellent agreement found between
the simulations reported in Figs. 1 and 2 and the theory
given in Eqs. (2) and (3) is taken as an internal check of
consistency.

For the case of standard percolation, the average resis-
tance of a sufficiently large RRN is related to the fraction
of broken resistors by the well known scaling relation:
�R� 	 �pc 2 p�2m where the universal exponent m �
1.303 is known from very accurate calculations [1,3]. Be-
cause of the superposition of two opposite processes, each
of them obeying standard percolation, this scaling relation
should hold also for the steady state of a RRN. In this case,
it relates the average network resistance �R� with the aver-
age fraction of defects. Figure 3 reports �R� as a function
of �pc 2 p� obtained from the simulations. The results are
well fitted by the expected scaling law, and the estimate of
the critical exponent m � 1.2 6 0.1 we have found is in
satisfactory agreement with the value reported in literature
[1–3].

We have then calculated the variance of resistance fluc-
tuations under steady state conditions, �dR2� � �R2� 2

�R�2, as a function of the average fraction of defects. Fig-
ure 4 reports �dR2��R2

0 as a function of �pc 2 p� while
the inset shows the same quantity as a function of p in
the region p ø pc. The figure shows the existence of two
regimes separated by the condition �dR2��R2

0 � 1��2N2�:
a nearly perfect network regime occurring when �dR2��
R2

0 , 1��2N2�, and a disordered network regime in the op-
posite case. In the first regime, the resistance noise is pro-
portional to the fraction of defects. This regime agrees with
the prediction of the analogous generation-recombination
model for a single trap electrical noise in homogeneous
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FIG. 2. Average fraction of broken resistors p as a function of
x. Symbols refer to MC simulations and continuous lines to the-
ory, respectively. The inset shows the same quantity comparing
the theory to simulations at small values of x.
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FIG. 3. Average resistance �R� as a function of pc 2 p.

semiconductors [27]. In the disordered network regime,
the breaking (and the recovering) of the backbone resistors
results in an enhancement of resistance fluctuations. We
note that the first regime disappears in the limit of an infi-
nitely large network (i.e., when N ! `), thus playing the
role of a finite size effect. In the second regime the data
follow closely the scaling relation

�dR2�
R2

0
	 �pc 2 p�2k0 , (6)

where for the exponent k0 we have found k0 � 5.5 (see
Fig. 4). For the sake of completeness, Fig. 5 reports the
steady state resistance noise normalized to the square of
the average RRN resistance, �dR2���R�2, as a function of
�pc 2 p�. The behavior is similar to that shown in Fig. 4.
Again, in the disordered network regime,

�dR2�
�R�2 	 �pc 2 p�2k , (7)
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FIG. 4. Resistance noise normalized to the perfect network
resistance �dR2��R2

0 as a function of pc 2 p. The inset shows
the same quantity as a function of p when p ø pc.
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FIG. 5. Resistance noise normalized to the average network
resistance �dR2���R�2 as a function of pc 2 p.

where k � 3.1, consistently with k � k0 2 2m. The
value of the k exponent is thus significantly higher than
the value reported in literature for the exponent kf � 1.12
associated with flicker (1�f) resistance noise in RRNs [5].

By combining Eq. (7) with R 	 �pc 2 p�2m, we ob-
tain, in the disordered network regime,

�dR2�
�R�2 	 �R�2s (8)

with s � 2.6 as reported in Fig. 6.
We have then investigated the dependence on p of the

correlation time t (in units of iteration steps) of resistance
fluctuations. For this purpose we have calculated the corre-
lation function of resistance fluctuations and found an ex-
ponential decay with time (Lorentzian shape in frequency)
as expected by analogy with the two level generation-
recombination model in semiconductors [27]. By analogy
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FIG. 6. Resistance noise normalized to the square of the av-
erage RRN resistance �dR2���R�2 as a function of the average
resistance �R�.
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FIG. 7. Correlation time of resistance fluctuations t as a func-
tion of the average fraction of broken resistors p. Symbols refer
to MC simulations, continuous line to the values obtained from
Eq. (9).

with the same two level model, t takes the expression
1
t

� WD 1
WR

�1 2 WR�
�

WD

p
. (9)

Figure 7 reports t as a function of p. Symbols refer to MC
simulations, while the continuous line refers to the expres-
sion in Eq. (9). The agreement between the predictions of
Eq. (9) and numerical results is excellent in a wide range of
decades, while theory tends to overestimate the simulations
near p � pc, where finite size effects can be the source of
the discrepancy. The overall agreement is considered to be
satisfactory, thus validating the theoretical interpretation
of the simulations. In concluding, we have studied a resis-
tive network in which two competing random processes are
present: breaking and recovering of the elemental resistors.
Depending on the probabilities of the two processes, WD

and WR , failure (associated with the percolation threshold
of broken resistors) or steady state of the RRN is reached.
In the case of failure, i.e., WR , WD��1 1 WD�, the aver-
age time to failure (ATTF) can be easily obtained by using
Eq. (2), thus giving

ATTF �
ln� 1

2 �1 2
WR

WD �12WR� ��
ln��1 2 WD� �1 2 WR��

. (10)

In the case of steady state, i.e., WR . WD��1 1 WD�,
we have studied the resistance noise as a function of the
average fraction of defects. We have found the existence
of two regimes: a nearly perfect network regime, corre-
sponding to an homogeneous conducting system, and a
disordered network regime, corresponding to a system near
the percolation threshold. Remarkably, the first regime
disappears in the limit of networks with an infinite large
size. The disordered regime is found to exhibit a scaling
relation for the relative variance of resistance fluctuations
�dR2���R�2 	 �pc 2 p�2k with k � 3.1. These results
confirm that noise is much more sensitive than resistance
in probing the dynamical defectiveness of a sample
[5–13,15,21–26]. The stationary RRN represents an
attractive physical model to investigate excess noise
associated with resistance fluctuations.
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