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We extend the method for the formulation of selection rules for high harmonic generation spectra
[Phys. Rev. Lett. 80, 3743 (1998)] beyond the dipole approximation and apply it to single-walled carbon
nanotubes interacting with a circularly polarized laser field. Our results show that the carbon nanotubes
can be excellent systems for a selective generation of high harmonics, up to the soft x-ray regime.

PACS numbers: 78.66.Tr, 33.80.Wz, 42.25.Ja, 42.65.Ky
There is a very limited number of possibilities by which
one can obtain coherent x-rays [1]. The interest in short-
wavelength sources stimulated numerous experimental in-
vestigations of harmonic generation spectra of noble gases
in intense linearly polarized laser fields (see [2], and ref-
erences therein). The recent experimental successes in the
field [3,4] emphasize the possibility of application of high
harmonics in spectroscopy and other areas. One property
which would have made the harmonic radiation particu-
larly useful is the selectivity of the generation of high har-
monics. In order to achieve a selective generation of high
harmonics, one has to devise a system possessing a very
high order spatiotemporal symmetry [5]. To the best of our
knowledge, such systems cannot be found among the pla-
nar molecules discussed in Ref. [5]. Here we show that the
interaction of nanotubes and circularly polarized incident
radiation is characterized by this type of symmetry and
can lead to the generation of the high order harmonics in a
selective fashion. Thus, already the first high harmonic
emitted by a nanotube can fall within the desired soft
x-ray range.

The approach to the formulation of the selection rules
developed by us previously [5] for the description of planar
systems is based on the dipole approximations with respect
to both the incident and emitted waves and is not valid for
the spatially extended target systems, such as nanotubes.
In fact, the dipole approximations can be misleading even
in the case of atomic targets sufficiently distorted by the
incident fields. For example, an exact symmetry analy-
sis would show that the selection rules for the harmonic
generation in the crossed beam setup proposed recently by
Tong and Chu [6] are only approximate. Therefore, let us
first present a general and exact method for the formula-
tion of the selection rules for high harmonic generation and
then proceed with applying it to the harmonic generation
by single-walled carbon nanotubes.

High harmonic generation (HHG) is a process in the
course of which a target (e.g., atomic or molecular) system
emits high harmonics of the incident laser frequency. Ac-
cording to classical electrodynamics, the intensity of lth
harmonic, I�lv�, in HHG spectra is associated with the
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corresponding Fourier component of the time-dependent
electron flux �J��r , t� [7],

I�lv� ~ j �Al 3 �kj2,

�Al ~
Z `

0
dt

Z `

2`
d3r �J��r , t�e2i�lvt2�k?�r�,

(1)

where v is the incident radiation frequency and �k is the
harmonic wave vector. Note that, in Eq. (1), �Al stands for
the (immeasurable) vector potential of the emitted field of
the frequency lv. The (measurable) magnetic and electric
fields propagating along the direction of the wave vector
�k are obtained from �Al by vector multiplication: �Hl �
i �Al 3 �k, �El �

ic
lv

�k 3 � �Al 3 �k�.
When dealing with microscopic or mesoscopic systems

behaving according to the laws of quantum mechanics,
one has to use the quantum mechanical expression for the
flux [8], J��r , t� � Re�C� �̂yC�, where �̂y is the electron
velocity operator. The most appropriate choice for the
wave function C, when regarding the symmetries of the
system in space and time, is Floquet wave function [5,9],
which is periodic in time apart from a phase factor. Its
time-periodic part, F��r , t�, is an eigenfunction of Floquet
Hamiltonian:

Ĥ �
h̄
i

≠

≠t
1

� �̂p 2 e �A��r , t��2

2m
1 V ��r� ,

Ĥ F��r , t� � ´F��r , t� .
(2)

The vector potential �A��r , t� for the incident plane wave
propagating along the z axis is

�A��r , t� �
E0

v
�cos�vt 2 kz�, a sin�vt 2 kz�, 0� , (3)

where E0 is the incident field strength, the wave vector
�k � �0, 0, k�, and a is equal to 0 and 61 for linear and
right or left circular polarizations, respectively.

Floquet theory can be applied if the incident radiation
pulse is many optical cycles long [10]. The Floquet expres-
sion for the vector potential of the lth harmonic emitted in
the incident field propagation direction is
© 2000 The American Physical Society
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�Al ~ ��C��r , t� j �̂AljC��r , t��� 1 ��C���r , t� j �̂A
y�

l jC���r , t��� ,

�̂Al � �̂ye2il�vt2kz�, �̂A
y�

l � �̂y
�
e2il�vt2kz�,

(4)

where �̂y �
1
m � �̂p 2 e �A��r , t��2 is the electron velocity op-

erator, and the double bracket notation ��· · ·�� stands for
the integration over spatial coordinates and over one field
period in time. Note that expression (4) is not based on the
dipole approximation with respect to either an incident or
emitted wave. Taking into account the spatial dependence
of the waves enables us to study the HHG by targets ex-
tended along the propagation direction of the radiation.

In order to discuss the selectivity of HHG quantitatively,
one has to derive the selection rules for the spectrum of the
emitted photons with energies equal to lh̄v, l � 1, 2, . . . .
The selection rules can be found in the following way:
One has to find all of the symmetry operations of the
time-dependent Hamiltonian (2). Such symmetries will
most likely be associated with transformations in space
and time and will be referred to as dynamical symmetries
(DS’s). If all of the DS operators commute with each other,
it is enough to verify the invariance of the vector potential

operators, �̂Al [Eq. (4)], under all of the DS operations.
Only those harmonics, for which at least one of the vector

potential operators, �̂Al , is invariant under all of the DS
operations, will be present in the HHG spectrum. The
higher the order of the DS present in the system, the more
selective is HHG. In the following we will show that
the interaction of a single-walled carbon nanotube with a
circularly polarized laser field can be characterized by DS
of a very high order.

Carbon nanotubes are a recently synthesized allotropic
form of carbon (see Ref. [11] for a review of their physical
properties). Single-walled carbon nanotubes, to which we
will restrict our attention, can be viewed as cylinders made
of graphite sheets. The infinite order translational symme-
tries of the graphite lattice can transform into various finite
order symmetries once the graphite sheet plane is trans-
formed into the nanotube cylinder. The order and character
of the resulting symmetries depend on the way the graphite
sheet boundaries are connected with each other to form the
cylinder. The nanotubes are classified by a pair of indices,
�n, m�, such that the �n, 0� (zigzag) and �n, n� (armchair)
tubes possess achiral structure, while a �n, 0 , m , n�
tube is chiral [11].

The two basic symmetry operations for a general nano-
tube relevant for our study can be taken as a revolution
about the highest order screw axis and the translation. Ex-
pressed in cylindrical coordinates, they are

SN ,R � �w ! w 1 c , z ! z 1 t� ,

T` � �z ! z 1 z0� ,
(5)

where the screw axis parameters (c is the chiral rotation
angle, t is the screw axis basic translation, N is the order
of the screw axis which is equal to the number of hexago-
nal units in a unit cell, and R is the number of rotations
around the nanotube axis after N successive operations)
and the nanotube period, z0, are functions of its indices
�n, m� (for their dependencies, see, e.g., Ref. [11]).

Consider, for example, the chiral nanotube with indices
�8, 2�. In this case, c �

3
28 2p and t �

2
28 z0. There-

fore, after N � 28 successive operations of S28,3, a general
point, Q, on the nanotube perimeter is transformed to an
equivalent point, Q0, at a distance 2z0 from Q, after having
completed three rotations around the nanotube axis.

Recently, Slepyan et al. [12] predicted that the HHG by
armchair nanotubes interacting with an intense radiation
linearly polarized along the nanotube axes is a highly effi-
cient process. In this paper we concentrate on HHG due to
the interaction of general nanotubes with an electromag-
netic field propagating along the nanotube axes and polar-
ized circularly in the perpendicular plane. The reason is
that this mode of interaction brings about the highest order
DS’s. The corresponding Floquet Hamiltonian [Eq. (2)]
possesses the following DS’s:
P̂N ,R �

µ
w ! w 1 c , z ! z 1 t, t ! t 1

kt

v
1 a

c

v

∂
,

P̂` �

µ
z ! z 1 z0, t ! t 1

kz0

v

∂
.

(6)
Equations (6) are just the spatial transformations dictated
by the symmetry of the nanotube potential [Eqs. (5)] and
compensated by the appropriate translations in time. The
order of P̂N ,R symmetry operation is equal to N for both
left and right circular polarizations, i.e., it is the same for
a � 1 and a � 21. The symmetries [Eqs. (6)] corre-
spond, of course, to the fixed positions of nuclei. In the fol-
lowing it is assumed that the carbon nuclei do not change
their positions during the interaction with the laser pulse
and regard them as frozen in their field-free equilibrium
positions.
In order to determine which harmonics are emitted by
nanotubes during the interaction with circularly polarized
radiation, it is sufficient to check the invariance of the
Âl,6 � Âl,x 6 iÂl,y operators [see Eq. (4)] under the
above two DS’s. It turns out that the Âl,6 operators
are invariant under P̂` for any harmonic order n. The
P̂N ,R DS operation, on the other hand, leaves invariant
the vector potential operators only for those harmonics
with l � 1, N 6 1, 2N 6 1, . . . , and pN 6 1, . . . .
The �pN 1 1�, p � 1, 2, . . . harmonics are circularly
polarized as the incident field, while the �pN 2 1�,
5219
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p � 1, 2, . . . harmonics are circularly polarized in the
opposite direction.

The order of the screw axis, N , of an achiral nanotube
is equal to twice the order of its rotation axis, n. Conse-
quently, the selection rule for HHG by achiral nanotubes is
l � 2pn 6 1. For example, the �10, 0� zigzag-type nano-
tube and the �10, 10� armchair-type nanotube emit only
the 19th, 21st, 39th, 41st, . . . harmonics of the incident
laser frequency. For such a value of N and incident ra-
diation wavelength of 1 mm, the first emitted harmonic
wavelength, l19, is about 53 nm.

The chiral nanotubes can possess screw axes of much
higher orders than the achiral ones, which leads to a much
more selective HHG by these systems. For example,
for the chiral �8, 2� single-walled carbon nanotube, the
�pN 6 1� selection rule implies that the first emitted har-
monics are the 27th and 29th. In such a case, the wave-
length of the first harmonic, generated by a circularly
5220
polarized 1 mm incident radiation, is about 37 nm. The
�8, 3� chiral nanotube, possessing only a slightly different
diameter but considerably higher order symmetry, would
generate the first high harmonics of orders 193 and 195.

Our discussion of the selectivity of HHG by single-
walled carbon nanotubes has been limited so far to the for-
mulation of the selection rules. It is important, however, to
estimate the intensities of the symmetry-allowed harmon-
ics emitted by these systems. To this end, let us consider
a model of HHG by nanotubes based on the tight-binding
approximation to the tube electronic structure [11] and the
dipole approximation with respect to the incident and emit-
ted waves. In contrast to our symmetry arguments, which
are generally valid, this approach is justified only for the
low frequency laser fields, such that the fundamental and
harmonic wavelengths are larger than the unit cell length.
The Floquet Hamiltonian is represented in the basis of
tight-binding Bloch states,
Ck
p�r0, w, z� �

X̀
q�2`

eikzp,q ? 2pz�r0, w 2 w�0�
p , z 2 zp,q� ,

zp,q � z�0�
p 1 �p 1 q�z0, p � 1, 2, . . . , 2N ,

(7)
where �w�0�
p , z�0�

p 	 are the positions of carbon atoms in the
zeroth unit cell and k is the quasimomentum, 2

p

z0
, k #

p

z0
. Only those field-free Hamiltonian matrix elements

which involve the same or adjacent atomic orbitals are
nonzero. The interaction term represented in the length
gauge is diagonal,

�Ck
pj

1
2

eE0r0�eivteiw 1 e2ivte2iw� jCk
p0�

�
1
2

eE0r0�eivteiw
�0�
p 1 e2ivte2iw

�0�
p �dp,p0 (8)

The solution of the time-dependent Schrödinger equation
leads to the Floquet-Bloch functions which are eigenstates
of the translation by a unit cell length, z0:

Fk
j �t� �r0, w, z� �

2NX
p�1

Ck
j,p�t�Ck

p�r0, w, z� . (9)

The corresponding quasienergies are functions of quasi-
momentum, ´j � ´j�k�. The single-electron Fourier
components of the time-dependent dipole moment, corre-
sponding to a specific Floquet-Bloch state, are

d
� j�
6,k�nv� � ��Fk

j �t�jer0eivnte6iwjFk
j �t��� . (10)

In order to take into account the generation of harmonics
by the electrons filling a number of quasienergy bands, we
average the Fourier components of dipole moment arising
from the ith Floquet-Bloch state, d

�i�
6,k�nv�, over the quasi-

momenta and sum them over the filled bands:

d6�nv� �
z0

2pN

NX
j�1

Z p�z0

k�2p�z0

dk d
�j�
6,k�nv� . (11)
This procedure is equivalent to the Hartree approxima-
tion to the multielectron Floquet-Bloch wave function [13].
Because of the chosen normalization of the Hartree wave
function, the resulting harmonic components of the dipole
moment, d6�nv�, are analogous to the single-atom, single-
electron response in calculations of HHG by atomic gases.
The model described above, while not being very precise,
should give a correct order of magnitude estimate for the
harmonic intensities.

In the present calculations we restrict our attention to
the intensities low enough so that the ionization is weak.
On the basis of the work by Lenzner et al. [14] we take
the appropriate threshold intensity as I � 1014 W�cm2.
The significant ionization is expected to take place above
this threshold, which cannot be accounted for by the pre-
sented model. Besides causing irreversible damage to
the nanotube sample, the breakdown would be accompa-
nied by the free electron generation having a negative ef-
fect on the propagation of the emitted harmonics. The
HHG spectra of the armchair [(5, 5), r0 
 6.5 a.u.], the
zigzag [(9, 0), r0 
 6.7 a.u.], and the chiral [(8, 2), r0 

6.9 a.u.] single-walled carbon nanotubes interacting with
the electric field of the frequency 0.037 a.u. (
1.0 eV,
l 
 1.2 mm) and the strength 0.05 a.u. (corresponding to
the intensity of 9 3 1013 W�cm2) are shown in Fig. 1.
The cutoff in the nanotube HHG spectra is not sharp and
appears at the maximal variation of the interaction energy,
ncutoff � 2eE0r0�h̄v. Such cutoff is characteristic of the
multicenter ringlike systems driven by circularly polarized
field when the interaction energy is much higher than the
energy differences of the field-free system [15]. The three
nanotubes possess about the same diameter (and hence
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FIG. 1. HHG spectra of the armchair (5, 5) (“a”), the zigzag
(9, 0) (“z”) and the chiral (8, 2) (“c”) nanotubes.

about the same value of the interaction energy) which leads
to the similar cutoff positions at about ncutoff � 20.

In the case of the armchair nanotube, the absolute values
of the Fourier components of the time dependent dipole
moment in the plateau region are of the same order of
magnitude as those obtained by Kulander and co-workers
in the atomic case for the linear polarization of the incident
field at the intensities close to 1014 W�cm2 [16]. The (9, 0)
zigzag nanotube exhibits lower intensities of the plateau
harmonics, while the first pair of harmonics emitted by
(8, 2) chiral nanotube is in the cutoff region.

In conclusion, the interaction of a parallel nanotube ar-
ray with a circularly polarized laser beam can lead to the
selective generation of high harmonics in the soft x-ray
range. The considered (5, 5) armchair nanotube gives rise
to the HHG spectrum which is both selective and efficient
enough to be of interest to experimentalists. The chiral
nanotubes represent the first example of realistic physi-
cal systems for which all harmonics, except the very high
ones, are forbidden by symmetry. This high selectivity,
however, is expected to show up only at intensities higher
than 1014 W�cm2. The feasibility of HHG by nanotubes at
such intensities depends on the breakdown thresholds for
these materials.

From a practical point of view, the nanotube targets lack
a number of serious drawbacks which are characteristic of
the molecular ones. Unlike molecules, the nanotubes can
be oriented in space just as solid targets. Arrays of nano-
tubes parallel to each other can be achieved by present
day methods [17]. Efforts are being made to prepare the
ropes containing the nanotubes of a single definite symme-
try [18]. The chemical bonding between carbon atoms in
nanotubes is rather strong which means that their deforma-
tion and dissociation in intense fields take place on longer
time scales than that of aromatic molecules. The lack of
light hydrogen atoms in nanotubes contributes to the same
stability effect.

Besides the potential significance for the generation
of the coherent, almost monochromatic, high frequency
radiation, the selective HHG by carbon nanotubes can be
used for the structural analysis of the nanotube samples.
The relative strengths of the harmonics allowed for differ-
ent nanotubes can provide information about the relative
abundances of the various symmetry species in a nanotube
sample. This information would be of great value given
that other means of analysis, such as scanning tunneling
microscopy, do not allow at present an unambiguous
determination of the nanotube indices.

The general framework for the formulation of the selec-
tion rules for HHG beyond the dipole approximation devel-
oped in this paper can be applied to the study of selectivity
of HHG by other systems which are extended along the
incident beam propagation direction and emit low wave-
length radiation.
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