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We present a systematic stability analysis for the two-dimensional Hubbard model, which is based on a
new renormalization group method for interacting Fermi systems. The flow of effective interactions and
susceptibilities confirms the expected existence of a d-wave pairing instability driven by antiferromag-
netic spin fluctuations. More unexpectedly, we find that strong forward scattering interactions develop
which may lead to a Pomeranchuk instability breaking the tetragonal symmetry of the Fermi surface.
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The two-dimensional Hubbard model [1] has attracted
much interest as a promising prototype model for the elec-
tronic degrees of freedom in the copper-oxide planes of
high-temperature superconductors, since it has an antifer-
romagnetically ordered ground state at half-filling and is
expected to become a d-wave superconductor for slightly
smaller electron concentrations [2].

Although the Coulomb interaction in the cuprate super-
conductors is rather strong, the tendency towards antiferro-
magnetism and d-wave pairing is captured already by the
2D Hubbard model at weak coupling. Conventional per-
turbation theory breaks down for densities close to half-
filling, where competing infrared divergences appear as a
consequence of Fermi surface nesting and Van Hove singu-
larities [3–5]. A controlled and unbiased treatment of these
divergencies cannot be achieved by standard resummations
of Feynman diagrams but requires a renormalization group
(RG) analysis which takes into account the particle-particle
and particle-hole channels on an equal footing.

Early RG studies of the two-dimensional Hubbard model
started with simple but ingenious scaling approaches, very
shortly after the discovery of high-Tc superconductivity
[3–5]. These studies focused on dominant scattering pro-
cesses between Van Hove points in k space, for which a
small number of running couplings could be defined and
computed on the one-loop level. Spin-density and super-
conducting instabilities where identified from divergencies
of the corresponding correlation functions.

A major complication in two-dimensional systems com-
pared to one dimension is that the effective interactions
cannot be parametrized accurately by a small number of
running couplings, even if irrelevant momentum and en-
ergy dependences are neglected, since the tangential mo-
mentum dependence of effective interactions along the
Fermi surface is strong and important in the low-energy
limit. This has been demonstrated in particular in a one-
loop RG study for a model system with two parallel flat
Fermi surface pieces [6]. Zanchi and Schulz [7] have re-
cently shown how modern functional RG methods can be
used to treat the full tangential momentum dependence
of effective interactions for arbitrary curved Fermi sur-
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faces. Evaluating the corresponding one-loop flow equa-
tions for the Hubbard model (with pure nearest-neighbor
hopping), antiferromagnetic and d-wave pairing instabili-
ties were found. An improved version of the functional
RG derived by Salmhofer [8], which is particularly suit-
able for a concrete numerical evaluation, has recently been
extended for the calculation of susceptibilities and applied
to the Hubbard model [9]. Most recently, a third func-
tional RG version has been used to analyze a possible spin
liquid regime in the Hubbard model with a sizable next-
nearest-neighbor hopping amplitude [10].

In this Letter we present and discuss results obtained from
Salmhofer’s [8] RG method for the two-dimensional Hub-
bard model with a small next-nearest-neighbor hopping am-
plitude on a square lattice. The expected existence of a
d-wave pairing instability driven by antiferromagnetic spin
fluctuations is confirmed. For a small finite next-nearest-
neighbor hopping amplitude the pairing instability domi-
nates over magnetic instabilities in the weak coupling limit
for any density. More unexpectedly, we find that strong
forward scattering interactions develop which may lead
to a Pomeranchuk [11] instability breaking the tetragonal
symmetry of the Fermi surface.

The one-band Hubbard model [1]
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describes tight-binding electrons with a local repulsion
U . 0. Here c

y
is and cis are creation and annihilation

operators for fermions with spin projection s [ �", #� on a
lattice site i, and njs � c

y
jscjs . A hopping amplitude 2t

between nearest neighbors and an amplitude 2t0 between
next-nearest neighbors on a square lattice leads to the dis-
persion relation

ek � 22t�coskx 1 cosky� 2 4t0 coskx cosky (2)

for single-particle states. This dispersion relation has
saddle points at k � �0, p� and �p , 0�, which generate
logarithmic Van Hove singularities in the noninteracting
density of states at the energy eVH � 4t0. For t0 � 0, ek
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has the nesting property ek1Q � 2ek for Q � �p , p�,
which leads to an antiferromagnetic instability for arbi-
trarily small U . 0 at half-filling [1].

The RG equations are obtained as follows (for details,
see Salmhofer [8] and Ref. [9]). The infrared singularities
are regularized by introducing an infrared cutoff L . 0
into the bare propagator such that contributions from mo-
menta with jek 2 mj , L are suppressed. All Green
functions of the interacting system will then flow as a func-
tion of L, and the true theory is recovered in the limit
L ! 0. Salmhofer [8] has recently pointed out that an
expansion of the effective action of the theory in pow-
ers of normal ordered monomials of fermion fields yields
differential flow equations with a particularly convenient
structure. With the bare interaction as initial condition at
the highest scale L0 � maxjek 2 mj, these flow equations
determine the exact flow of the effective interactions as L

sweeps over the entire Brillouin zone down to the Fermi
surface. The effective low-energy theory can thus be com-
puted directly from the microscopic model without intro-
ducing any ad hoc parameters.

For a weak coupling stability analysis it is sufficient
to truncate the exact hierarchy of flow equations at the
one-loop level and neglect all components of the effective
interaction except the two-particle interaction GL, whose
flow is then determined exclusively by GL itself. Flow
equations for susceptibilities are obtained by considering
the exact RG equations in the presence of suitable external
fields, which leads to an additional one-particle term in
the bare interaction, and expanding everything in powers
of the external fields to sufficiently high order [9].

One cannot solve the flow equations with the full
energy and momentum dependence of the vertex function,
since GL has three independent energy and momentum
variables. The problem can, however, be much simplified
by ignoring dependences which are irrelevant in the low-
energy limit, namely, the energy dependence and the
momentum dependence normal to the Fermi surface (for
details, see Ref. [9]). This approximation is exact for
the bare Hubbard vertex, and asymptotically exact in the
low-energy regime. The remaining tangential momentum
dependence is discretized for a numerical evaluation.
Most of our results were obtained for a discretization with
16 points on the Fermi surface (yielding 880 “running
couplings”), and we have checked that increasing the
number of points does not change our results too much.

We have computed the flow of the vertex function for
many different model parameters t0 and U (t just fixes the
absolute energy scale) and densities close to half-filling.
In all cases the vertex function develops a strong momen-
tum dependence for small L with divergencies for several
momenta at some critical scale Lc . 0, which vanishes
exponentially for U ! 0. To see which physical insta-
bility is associated with the diverging vertex function we
have computed commensurate and incommensurate spin
susceptibilities xS�q� with q � �p , p�, q � �p 2 d, p�,
and q � �1 2 d� �p , p�, where d is a function of density
[12], the commensurate charge susceptibility xC�p, p�,
and singlet pair susceptibilities with form factors [2]
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2
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sinkx sinky �d-wave dxy� .

(3)

At least one of these susceptibilities diverges together with
the vertex function at the scale Lc. Depending on the
choice of U, t0, and m, divergencies are found for the
commensurate or incommensurate spin susceptibility or
for the pair susceptibility with dx22y2 symmetry. In Fig. 1
we show a typical result for the flow of susceptibilities as
a function of L. The pairing susceptibility with dx22y2

symmetry is obviously dominant here (note the logarith-
mic scale). Following the flow of the two-particle inter-
actions and susceptibilities, one can see that those interac-
tion processes which enhance the antiferromagnetic spin
susceptibility (especially umklapp scattering) also gener-
ate an attractive interaction in the dx22y2 pairing channel.
This confirms the spin-fluctuation route to d-wave super-
conductivity in the Hubbard model [2].

In Fig. 2 we show the �m, U� phase diagram for t0 �
20.01t obtained by identifying the dominant instability
(for L ! Lc� from the flow for many different values of
m and U. Note that for U ! 0 the pairing instability
always dominates, because the BCS channel dominates
the flow in the limit L ! 0. A spin density wave is the
leading instability for U ! 0 only in the special case with
perfect nesting, t0 � 0 and m � 0 (cf. the phase diagram
computed from the one-loop flow for t0 � 0 in Ref. [9]).

How the critical energy scale Lc varies as a function
of the chemical potential (i.e., as a function of density) is
shown in Fig. 3 for an interaction strength U � 1.5t. Ob-
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FIG. 1. The flow of the ratio of interacting and noninteracting
susceptibilities for t0 � 20.01t, U � t, and m � 20.055t.
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FIG. 2. The one-loop ground state phase diagram for t0 �
20.01t near half-filling (marked by the dashed vertical line);
the symbols represent the parameter values for which the flow
has been computed and whether the dominant instability is mag-
netic (squares) or superconducting (circles); the solid line sep-
arates the spin-density wave regime from the superconducting
regime.

viously Lc is maximal for m at the Van Hove energy. Note
that Lc must not be interpreted as a transition tempera-
ture for spin density wave formation or superconductivity,
but rather as an energy scale where bound particle-hole or
particle-particle pairs are formed.

Since some of the forward scattering interactions grow
strong for small L, while the Fermi velocity is very small
near the saddle points, the Fermi surface may be sig-
nificantly deformed by interactions, especially for m �
eVH. Previous investigations of Fermi surface deforma-
tions within standard perturbation theory have yielded only
very small shifts even for sizable interaction strengths [13],
but in these studies the possibility of a spontaneous break-
ing of the point group symmetry of the square lattice has
not been taken into account.
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FIG. 3. The critical energy scale Lc as a function of the chem-
ical potential m for U � 1.5t and t0 � 20.01t. The different
symbols indicate whether the leading instability is a spin-density
wave or d-wave pairing instability.
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To analyze systematically the stability of the Fermi sur-
face shape, we define a susceptibility kkFk0

F
� dskF �dmk0

F
,

which measures the size of Fermi surface shifts dskF for
small momentum dependent shifts of the chemical poten-
tial dmk0

F
at points k0

F on the Fermi surface. The matrix
kkFk0

F
defines a linear integral operator acting on functions

of kF . A simple consideration in the spirit of phenomeno-
logical Fermi liquid theory shows that the corresponding
inverse operator is given by

�k21�kFk0
F

� ykF d�kF 2 k0
F� 1 2fc

kFk0
F

, (4)

where ykF is the Fermi velocity and fc
kFk0

F
is the Landau

function in the charge (spin-symmetric) channel. It is now
obvious that the matrix kkFk0

F
is symmetric. The Fermi

surface is stable, if all eigenvalues of k (or k21) are posi-
tive. Landau’s energy functional can be written as a
quadratic form in dskF , with k21 as the kernel [14], and
negative eigenvalues would imply that this energy can be
lowered by a suitable deformation of the Fermi surface. In
isotropic Fermi liquids such instabilities occur for strongly
negative Landau parameters, as first pointed out by Pomer-
anchuk [11].

We have computed the renormalization group flow of
the eigenvalues and eigenvectors of the operator k21 from
the flow of the Landau function fcL

kFk0
F
, which is given di-

rectly by the vertex function in the forward scattering chan-
nel [15]. For various choices of the model parameters we
have always found that k acquires a negative eigenvalue
at a scale LP

c above the scale Lc where the vertex func-
tion diverges. Usually LP

c is only slightly above Lc, but
LP

c �Lc becomes large when the Fermi surface is close to
the Van Hove points. In all cases the corresponding eigen-
vector signals a deformation of the Fermi surface which
breaks the point group symmetry of the square lattice, as
shown schematically in Fig. 4. The instability is mainly
driven by a strong attractive interaction between particles
(or holes) on opposite corners of the Fermi surface near the
saddle points and a repulsive interaction between particles
on neighboring corners.

The above diagnosis of Pomeranchuk instabilities would
be rigorous for a normal Fermi liquid with finite renormal-
ized interactions in the infrared limit. In the present sys-
tem, however, the vertex function diverges at a finite scale
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FIG. 4. Schematic plot of Fermi surface deformations breaking
the square symmetry; the deformed surface may be closed (a)
or open (b).
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and possible Pomeranchuk-type instabilities compete with
magnetic and superconducting instabilities. Note that LP

c
is not the energy scale at which a Pomeranchuk instability
sets in, but only the scale at which the (flowing) Landau
function has become big enough to destabilize the Fermi
surface in a putative Fermi liquid ground state. Since we
have no quantitative theory of the strong coupling physics
near and below the scale Lc, we can discuss only two pos-
sible scenarios: (i) Energy gaps due to particle-particle or
particle-hole binding may stop the flow of forward scatter-
ing interactions before a Pomeranchuk instability sets in.
(ii) The Pomeranchuk instability is not blocked by binding
phenomena. In that case one would have a finite tempera-
ture phase transition with a spontaneous breaking of the
(discrete) tetragonal symmetry of the square lattice and
subsequent continuous symmetry breaking associated with
magnetic order or superconductivity in the ground state.

The Pomeranchuk instability occurs more easily if the
Fermi surface is close to the saddle points of ek. On
the other hand, nesting raises the scale for particle-hole
binding (leading ultimately to magnetic order). The best
candidate is therefore the Hubbard model with a sizable t0

(reducing nesting) and m � eVH.
We emphasize that the Pomeranchuk instability does not

cut off the singularity in the Cooper channel since it does
not break the reflection invariance. Hence, at sufficiently
large doping away from half-filling, d-wave superconduc-
tivity will set in in any case, with an order parameter that
may be slightly distorted away from perfect d-wave sym-
metry. The Pomeranchuk instability would also not destroy
the umklapp scattering route to an insulating spin liquid
discussed recently by Furukawa et al. [10].

To our knowledge a Pomeranchuk instability has not
yet been observed in numerical solutions of the two-
dimensional Hubbard model. Of course this may be due
to finite size limitations or too high temperatures in Monte
Carlo simulations. It would thus be interesting to compute
the Fermi surface susceptibility kkFk0

F
by Monte Carlo

methods. In real systems a Pomeranchuk instability as in
Fig. 4 may lead to an orthorhombic lattice distortion, as
a consequence of the coupling of electronic and lattice
degrees of freedom.

In conclusion, modern renormalization group methods
establish the expected d-wave pairing instability in the two-
dimensional Hubbard beyond doubt. Note that for small
bare interactions and in a parameter regime where only
particle-particle pairing fluctuations grow strong, the
strong coupling problem associated with the formation
of a superconducting state can be treated rigorously [16].
In addition to magnetic or superconducting instabilities,
a Pomeranchuk instability breaking the tetragonal sym-
metry of the Fermi surface is likely to occur for a Fermi
surface near the saddle points in the absence of perfect
nesting. A quantitative analysis of this instability requires
the inclusion of spontaneous symmetry breaking and
self-energy terms into the RG scheme (work in progress).
Self-energy contributions are usually small and regular at
weak coupling, but they become important near the Van
Hove points [17]. Although our one-loop RG is a priori
controlled only at weak coupling, the experience with
many other systems shows that qualitative features of a
theory emerging in a loop expansion usually survive for
quite strong interactions.

When this work was completed we were informed that
a Pomeranchuk instability leading to an open Fermi sur-
face as in Fig. 4b has also been found within a mean-field
theory for the t-J model, and it has been pointed out that
an alternate stacking of such Fermi surfaces in the cuprate
planes may explain angle-resolved photoemission data in
La22xSrxCuO4 [18].
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