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Stability of Water Bells Generated by Jet Impacts on a Disk
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Water bells appear when a cylindrical liquid jet impacts normally onto a disk of similar diameter. First
observed and described experimentally by F. Savart, their stationary shape was analytically obtained
by J. Boussinesq. Here we consider the stability of these bells and derive a general stability criterion
showing their sensitivity both to the pressure difference across the liquid sheet and to the ejection angle
from the impacting disk. In this later case, we find a critical angle of ejection above which the bell is
periodically destroyed and created.

PACS numbers: 47.17.+e, 47.20.–k, 68.10.–m, 68.35.Ja
Historically, the study of liquid sheets was initiated by
Savart in 1833 [1–4], following the idea that the precise
observation of fluid motion could lead to the understand-
ing of the properties of liquids. These problems are still
of interest for practical applications, since the formation
of liquid sheets and their stability represent an important
element of the atomization process involved, for example,
in all engines where the liquid fuel burns as drops. Indeed,
industrial observations reveal that the antepenultimate step
of the drop production mechanism often consists of the
formation and destabilization of liquid sheets. These ob-
servations have already initiated several studies [5–7], and
initially motivated the present one. From the physical side,
the originality of this work does not specifically rest on the
description of the stationary shape of the bells but rather on
the general stability argument that follows. To our knowl-
edge, the stability of bells has never been considered and
the self-oscillating regime never reported.

Prior to the stability, we first consider the problem of
the impact of a cylindrical liquid jet of diameter D0 �L�,
with the velocity U0 �LT21� normally to a disk of diameter
Di �L�, under the gravity field g �LT22�. (Terms in brack-
ets indicate the dimension of the parameter: [L] length,
[T ] time, [M] mass.) The liquid being defined by its den-
sity r �ML23�, viscosity n �L2T21�, and surface tension
s�MT22�, for similarity purposes, we characterize the ini-
tial fluid state with the nondimensional Reynolds, Re �
U0D0�n, and the Weber, We � rU2

0D0�s, numbers that,
respectively, compare inertia to viscosity and surface ten-
sion. (For water, r � 1000 kg�m3, n � 1026 m2�s, and
s � 0.073 kg�s2.) Depending on the geometrical diame-
ter ratio X � Di�D0, several scenarios can be expected:
In the singular limit X � 0, the jet undergoes the clas-
sical capillary Savart-Plateau-Rayleigh instability [1,8,9].
The opposite limit X ¿ 1 leads to the so-called hydraulic
jump phenomenon, where a thick and calm layer of fluid is
connected to the jet through a thin and rapid layer. The lo-
cation of the jump critically depends on both the injection
parameters and on the limit conditions at infinity [2,10].
In the intermediate domain X � 1, Savart [2,3] has shown
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that one can observe symmetrical water bells such as the
one presented in Fig. 1.

The experimental setup used to study these bells is pre-
sented in Fig. 2. Flowing in a closed loop to maintain its
physical characteristics constant (r, n, and s), the liquid
is initially contained in a pressurized reservoir. A flow
meter AALBORG enables the accurate control of the jet
velocity U0, defined as the ratio of the flow rate to the exit
section area. We use high contraction injectors to achieve
a laminar top hat profile jet up to Reynolds numbers of the
order of 30 000. The contraction and acceleration of the jet
prior to the impact is neglected in the whole paper since
the Froude number Fr � gh�U2

0 , based on the distance h
from the nozzle to the impactor, never exceeded 1022. A
back light scattering method is used to illuminate the bells,
and we observe their stability with a high speed video cam-
era Kodak 4500HS coupled with a personal computer.

Theoretically, we first focus on the stationary shape of
water bells, using the notations presented in Fig. 1. Since
X � 1, we neglect the viscous losses on the disk and

FIG. 1. Water bell obtained with D0 � 3 mm, U0 � 2.08 m�s,
and Di � 7.33 mm.
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FIG. 2. Experimental setup.

assume that the liquid film is ejected at (r � ri � Di�2,
z � 0) with the velocity U0 and forming the angle c0 with
the z axis at the detaching point.

Using U0 and l � D0We�16 as the characteristic speed
and length, Taylor [11] has shown that the conservation
of mass and momentum enable the determination of the
bell shape through the integration of the nondimensional
system:

ũ2 � 1 1 2bz̃ (1)

and

�ũ 2 r̃�
dc

ds̃
� 2 cos�c� 1 ar̃ 2 b

sin�c�
ũ

, (2)

where a � pl��2s� is the reduced pressure difference
between the inside and the outside of the bell and b �
gl�U2

0 is the reduced gravity. All the dimensionless quan-
tities are noticed with a tilde except angles. s̃ stands for
the reduced curvilinear location and ũ for the reduced ve-
locity in the liquid sheet.

Physically, Eq. (1) just expresses the increase of mo-
mentum in the direction of the flow due to the acceleration
of gravity and Eq. (2) the equilibrium of the liquid sheet
in the direction normal to the flow when submitted to cen-
trifugal acceleration, curvature effects, pressure difference,
and gravity.

This system of Eqs. (1) and (2) has to be integrated
with the initial conditions r̃�0� � r̃i and �dr̃�dz̃�z̃�0 �
tan�c0�.

In the limit a � 0 and b ¿ 1, where there is no
pressure difference and where the effect of gravity over-
comes surface tension, the system (1) and (2) leads to the
paraboloid

z̃ �
b

2
�r̃ 2 r̃i�2. (3)

In that limit, the fluid particles at the edge of the disk are
independent and fall under their own weight.

In the limit a � 0 and b ø 1, surface tension effects
dominate and the integration of the system (1) and (2) leads
to the catenary

r̃ � 1 2 c1 cosh

µ
z̃ 2 c2

c1

∂
, (4)
with the constants of integration

c1 � �1 2 r̃i� cos�c0� and c2 � c1 ln

µ
1 1 sin�c0�

cos�c0�

∂
.

(5)

This solution was first published 36 years after Savart’s
work by Boussinesq [12,13]. Compared to the paraboloid,
this later shape exhibits a symmetry with regard to the
equatorial plane defined by dr̃�dz̃ � 0. This symmetry is
broken as soon as gravity starts to play a role. (Looking at
horizontal bells, Taylor [11] has shown that air entrainment
can also break the symmetry of the bells.)

According to the nondimensional equation (2), the
effect of gravity is of the order b compared to the
effect of surface tension which implies that the gravi-
tational and the capillary domain are separated by the
critical value b � gl�U2

0 � 1. Since l � We�16D0, b

reduces to b � �D0�a�2�8, where a �
p

2s��rg� is
the capillary length of the liquid-air interface (for water
on earth, a � 3.8 mm). In our applications, b never
exceeded 0.1 and the shapes (Fig. 1) clearly exhibit a
symmetry with regard to the equatorial plane. Moreover,
the condition a � 0 was experimentally achieved using a
straw connecting both sides of the bell. These conditions
justify the comparison of the Boussinesq’s solution to
the experimental shapes obtained with an edge detection
algorithm presented as a black continuous line in Fig. 1.
If c0 is given, this solution compares well with the shape
extracted from the pictures as presented in Fig. 3.

Considering the stability of the closed capillary bells,
two different examples of unstable sheets are presented in
Figs. 4 and 5. In Fig. 4, we start the experiment with a
stable bell (top left image) similar to the one presented in
Fig. 1, and we progressively decrease the flow rate. This
induces a pressure increase which triggers at one point a
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FIG. 3. Comparison between the Boussinesq catenary solution
and the water bell shape extracted from Fig. 2.
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FIG. 4. Instability triggered by a pressure decrease, ob-
served with c0 � 77±, D0 � 3.0 mm, Di � 9.87 mm, and
U0 � 2.7 m�s. Time increases from left to right and from top
to bottom with the time step Dt � 35.5 ms.

shape transformation and the bursting of the bell. The trig-
gering mechanism is thus removed at the bursting since the
pressures are equalized, and if we stop decreasing the flow
rate at the beginning of the transformation, the daughter
bell (bottom right image) remains stable. If we continue to
decrease the velocity, the bell will undergo a similar trans-
formation and we can get up to 10 generations of bells,
each of them being smaller than the previous one and larger
than the following one.

The phenomenon presented in Fig. 5 is very different in
the sense that the cycle presented reproduces itself periodi-
cally without any change of the flow rate or other control
parameter. The only difference with the stable bell pre-
sented in Fig. 1 is the ejection angle which is here closer to
p�2. That cycle also leads from a mother bell to a daugh-
ter bell, identical to the mother and that will, once closed,
undergo the same unstable scenario without any change of
the initial conditions. In that particular case, bells are cre-
ated and destroyed with a frequency close to 2 Hz.

The main observation on the bells stability concerns the
influence of the pressure difference, p. If that difference is
kept equal to zero, the resulting bells always remain stable.
The origin of the bells’ stability thus lies in the pressure
difference effect, or more precisely in the reaction of the
bell to a pressure difference perturbation. Let us first imag-
ine that following a pressure increase inside the bell, the
volume of the whole bell increases. In that case, the re-
action of the bell tends to compensate the origin of the
5108
FIG. 5. Instability characterized by a large angle of ejection
c0 � 87±, observed with D0 � 3.0 mm, Di � 10.0 mm, and
U0 � 2.21 m�s. Time increases from left to right and from top
to bottom with the time step Dt � 27.7 ms.

perturbation and one expects the bell to remain stable. On
the contrary, if the bell volume decreases following a pres-
sure increase, the bell reaction amplifies the perturbation
and one may expect, at the end, the full bursting of the
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FIG. 6. Evolution of the nondimensional volume Ṽ with the
pressure a, for different values of c0: �, 65±; �, 70±; �, 75±;
�, 80±; �, 85±.
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FIG. 7. Evolution of the nondimensional volume Ṽ with the
ejection angle c0.

bell. This analysis leads to the stability criterion,

dV
dp

$ 0 , (6)

where V is the volume of the closed bell. Looking at
the system (1) and (2) in the limit b ø 1, we get that
V � l3p

Rz̃max

0 r̃2 dz̃ defined using the maximal location
on z, z̃max, is a function of three parameters V �l, a, c0�.
Noticing that l and p are independent, the stability crite-
rion (6) can be written as

dṼ
dp

�
1
l3

dV
dp

�

µ
≠Ṽ
≠a

∂
c0

l
2s

1

µ
≠Ṽ
≠c0

∂
a

dc0

dp
. (7)

We first concentrate on the case where the first term in
the right-hand side of Eq. (7) dominates, that is, where c0
almost remains constant and where the driving mechanism
is the pressure difference a. For different ejection angles
c0, the evolution Ṽ �a�, obtained through the numerical
integration of the system (1) and (2), is presented in Fig. 6.
These curves all exhibit a maximum, the value of which
increases when the angle c0 is decreased. According to
Eq. (7), one deduces that the corresponding bells are stable
for the small values of a and become unstable once the
maximum is passed. Since the bursting of the bell leads
to a � 0, one expects the instability to occur once. This
limit corresponds to the instability presented in Fig. 4.

We now concentrate on the limit where the second term
in Eq. (7) dominates, that is, around a � 0, where accord-
ing to Fig. 6 �≠Ṽ�≠a�c0 � 0. Making the statement that
0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,005 0,01 0,015 0,02

y = m1 * M0
ErrorValue

0,1544813,548m1 
NA0,0040965Chisq
NA0,96711R

l / ( )U0 s

T s( )

FIG. 8. Evolution of the self-sustained oscillation period T ,
with the characteristic time of regeneration l�U0.

c0 results from the local balance of forces at the point of
detachment, one deduces that dc0�dp . 0 and the stabil-
ity of the bell depends only on the sign of �≠Ṽ�≠c0�a�0.
For a � 0, we use the catenary of Boussinesq to
evaluate Ṽ �c0�. This evolution is presented in Fig. 7
and clearly exhibits a maximum value at c

�
0 � 78.8±.

That value separates the stable bells (c0 , c
�
0 ) where

�≠Ṽ�≠c0�a�0 . 0 from the unstable ones (c0 . c
�
0 )

where �≠Ṽ�≠c0�a�0 , 0.
In this later case, the instability also leads to the burst-

ing of the bell which keeps a � 0 but does not affect the
origin of the instability, c0 . c

�
0 . One thus expects the

instability to reproduce itself continuously. This limit cor-
responds to the instability presented in Fig. 5. The period
T of the instability is presented in Fig. 8 as a function of
the regeneration time l�U0. This figure suggests a linear
relationship T � 13.5l�U0.
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