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We present two methods that allow for the efficient numerical propagation of continuum wave packets
to large times. Time-dependent solutions of the Schrödinger equation that include continuum components
are numerically challenging to solve because the wave packet travels, spreads, and acquires a spatial
phase gradient. The methods we propose account for these kinematic effects analytically in general and
numerically tractable schemes.

PACS numbers: 34.10.+x, 32.80.Rm, 34.50.Fa
In recent years direct solution of the time-dependent
Schrödinger equation (TDSE) has been a rapidly growing
theoretical technique for studying atomic and molecular
collision processes. This method has been applied to such
diverse systems as laser-atom interactions [1–3], electron
impact ionization [4], photoionization [5], and heavy par-
ticle impact ionization [6,7]. In part, the impetus for a di-
rect solution of the TDSE reflects the exponential growth of
computing capability, but there is also an important physi-
cal motivation. Namely, almost all systems studied by di-
rect integration involve continuum processes.

Time-dependent methods are particularly well suited
for continuum problems since they require no knowledge
of the asymptotic boundary conditions. This freedom
from boundary conditions is in clear contrast to standard
time-independent scattering formulations for which the
asymptotic solution is needed for matching. For systems
such as doubly ionized helium, the boundary conditions for
the two continuum electrons are approximate at best. In
the time-dependent approach, the ionized electronic wave
packet occupies a finite— albeit increasingly large—vol-
ume of space. It is thus sufficient to set the wave function
to zero at the boundary of this volume. Moreover, time-
dependent methods provide very intuitive physical pictures
of the dynamics.

Direct integration of the TDSE is ideal for systems in-
volving short duration perturbing interactions, i.e., colli-
sion times comparable to the time scale of oscillations in
the unperturbed system. When the interaction time is long,
however, wave packet propagation becomes prohibitively
expensive computationally because the continuum compo-
nent of the wave function travels and expands and because
an increasingly large spatial phase gradient develops in the
wave function with time. The first point requires that the
extent of the spatial grid be large, while the second dictates
that the grid density should also be high.

To illustrate the difficulty of direct wave packet propa-
gation applied to long-interacting systems involving
the continuum, we offer the simple example of a free,
expanding Gaussian wave packet. The time evolution
of such a packet is analytic (atomic units will be used
throughout):
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Here N is a time-dependent normalization factor, andp
w is proportional to the width of the Gaussian. The wave

packet travels with a constant mean velocity y and exhibits
the usual expansion proportional to time. A numerical
representation of Eq. (1) will eventually face difficulties
when the numerical boundary is reached. One sees that
there will also be difficulties since the phase increases
quadratically with distance from the center of the wave
packet. Physically, this phase dependence reflects the fact
that the outer edge of the wave packet is moving faster
than the inner part. Indeed, ionization has been likened to
the Hubble expansion of the universe, where the velocity
between two points in space is proportional to the distance
between them [8]. From a numerical point of view, this
phase can be as problematic as boundary effects since one
must have a dense set of grid points to account for the
spatial oscillations.

One way to deal with the wave packet expansion is to
introduce boundary conditions that reduce or eliminate
artificial reflections from the numerical boundary. Several
such schemes have been proposed and used in the litera-
ture, including imaginary potentials and masking functions
[9,10], Siegert state expansions [11], complex rotations
[12], and temporally nonlocal boundary conditions
[13–15]. To some extent, the problem with the increasing
phase gradient is also solved with these schemes since the
phase at the packet edge will increase only until it encoun-
ters the numerical boundary. But if the interaction volume
is large, the inability to represent the fine oscillations at
the edge of the packet will distort the propagation long
before the grid boundary is reached. Even in momentum
space, the phase gradient causes problems. It is true
that the range of momenta required is fixed, but the
phase gradient still demands a dense grid in momentum
space [16,17].

Two other approaches that seek to remove the bound-
ary reflections are worth noting. The first involves a co-
ordinate transformation that maps the entire space onto a
© 2000 The American Physical Society
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finite domain [2,18], and the second propagates the wave
function in the interaction representation [19,20]. The co-
ordinate transformation eliminates reflections effectively,
but it does not address the phase gradient issues pointed
out here. On the other hand, the interaction representation
seems ideal since it removes all of the effects of kinetic
energy, but it is difficult to implement efficiently.

There have thus been partial solutions of the practical
problems associated with continuum wave packets, but we
address here the more general problem of how to best
represent a time-dependent wave packet without sacrificing
the bound part of the wave function. In this Letter, we
propose and demonstrate two general, efficient approaches
that explicitly account for the wave packet expansion while
faithfully representing any bound states.

The first approach incorporates explicitly time-
dependent Gaussians into a general close-coupling ap-
proach. We represent the free component of the wave
packet by spreading Gaussians, as shown in Eq. (1),
and the bound part by stationary Gaussians. As such
the method combines the Gaussian wave packet method
developed for dynamics [21] with the Gaussian basis
expansion for structure in quantum chemistry [22].

We discuss here one way to implement this idea to solve
the general time-dependent Schrödinger equation,
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where the potential has been divided into a stationary term,
V0, and a time-dependent term, VI . As is done in the stan-
dard close-coupling technique, the stationary state prob-
lem, H0f

B
i � Eif

B
i , is solved at an initial time over the

set of Gaussians. This prediagonalization provides a set of
bound states, Ei , 0, and a set of pseudostates, Ei . 0,
upon which c�x, t� can be expanded.

To incorporate the expanding Gaussians, we duplicate
the basis functions, f

B
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Gaussians by their time-dependent counterpart. Specifi-
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F
i �x, t�,

that satisfy

fF
i �x, t � 0� � fB

i �x� ,

i
≠

≠t
fF

i �x, t� � 2
1
2

≠2

≠x2 fF
i �x, t� .

The purpose of defining the f
F
i in this way is to create a

freely propagating basis set that is mutually orthogonal.
The only concern of linear dependence comes between
the pair of functions f

B
i and f

F
i . The functions f

F
i are

added into the calculation when j�fF
i jf

B
i �j becomes less

than 90%. As will be demonstrated in the model problem
below, the expanding part of the wave packet is effectively
represented by the basis set, f

F
i �x, t�.

The second approach analytically removes the kinematic
effects from the wave function by suitable transformations
based upon the scaling transformation [23,24]
x � R�t�j . (3)

In this expression, j is a dimensionless coordinate, and
R�t� is a scaling factor that depends only on time. The
present development is for a one-dimensional Cartesian
coordinate x for purposes of clarity, but the approach ap-
plies generally to any number of dimensions and to other
coordinate systems. Physically, the dilation described by
Eq. (3) causes the coordinates to expand with the con-
tinuum components of the wave function.

Our application of scaling is a generalization of the ap-
proach originated by Solov’ev and Vinitsky for ion-atom
collisions [23]. In their work and subsequent developments
[24], the scaling factor R was inextricably linked to the in-
ternuclear distance. This Letter breaks from their work
by recognizing that R need not correspond to a physical
quantity in the system, but can be chosen to have any con-
venient form.

The scaling in Eq. (3) is substituted into the time-
dependent Schrödinger equation Eq. (2), and a new
equation for the wave function f�j, t� [23],

f�j, t� �
q

R�t� e2�i�2�mR �Rj2

c�x, t� ,

is derived. The square root factor preserves the normaliza-
tion in the new coordinate j. The exponential phase factor
has been chosen to simplify the transformed Schrödinger
equation. In more physical terms, it accounts for the phases
of the different velocity components of the wave packet.
The resulting scaled time-dependent Schrödinger equation
is [23]
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From this equation we see that there are two primary
changes due to the scaling transformation: the addition
of an effective harmonic potential and the addition of a
time dependence to the interaction potential. The effective
potential term is analogous to more familiar terms in non-
inertial frames but arises here from the “acceleration” of
the dilation factor R. We note that this equation is an exact
representation of the original Schrödinger equation. It can
thus be solved by any convenient means and can, in prin-
ciple, be incorporated into existing time evolution codes.

The benefits of scaling can be illustrated with the Gauss-
ian wave packet in Eq. (1). After applying the scaling
transformation and choosing R�t� to behave as gt for large
t (g is a constant with units of velocity), one finds that in
this limit the wave packet becomes
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This wave function describes a time-independent Gauss-
ian centered at j � y�g. Thus, the combined effects of
all transformations outlined here are to remove the rapid
oscillation from the wave packet, leaving just a stationary,
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slowly varying envelope. The constant g determines its
location and its width—both of which are fixed in time
asymptotically.

For practical calculations, though, the evolution of the
bound states will be as important as the continuum. For
a given eigenstate cn�x� of the potential V �x�, the trans-
formed wave function is

fn�j, t� �
q

R�t� e2�i�2�R �Rj2

cn�Rj�e2iEnt . (6)

The extra phase factor plays little role here since the spa-
tial extent of the bound state cn is limited. The widths of
any bound states decrease in the scaled coordinate. Thus,
one must simply ensure that whatever numerical method is
used to solve Eq. (4) is capable of representing the bound
states as they shrink during the time integration. The ef-
fort required on this account is in practice much less than
that required to represent the continuum in an unscaled
problem.

To illustrate how the above approaches allow for effi-
cient solution of the TDSE without restricting the domain
of the system, we consider a Hamiltonian that models an
atom in a half-cycle laser pulse,

H � 2
1
2
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≠x2 2 e2x2

1 E�t�x .

The laser pulse E�t� is given by

E�t� �

Ω
E0 cos2� pt

2t �, 2t , t , t,
0, jtjt,

where E0 and t are both 1 a.u. We chose this particu-
lar system since the resulting time-dependent wave func-
tion is simple to interpret. The short range, Gaussian
potential supports only one bound state (of binding en-
ergy 0.477 390 a.u.), and the rapid, strong pulse produces
a well-localized wave packet in the continuum of com-
parable amplitude to the bound state. Indeed, the solid
lines in Fig. 1 show a sharp, stationary peak in the wave
function at x � 0 and a spreading, leftward-traveling wave
packet centered at x , 0 representing the bound and con-
tinuum components of the wave function, respectively.

The results shown in Fig. 1 were calculated by close
coupling with freely propagating basis functions f

F
i , but

we have also obtained the same wave function by solving
the scaled Schrödinger equation, Eq. (4), on a small set of
basis splines (see Fig. 2). Comparing Figs. 1(a) and 1(b),
one sees how the ejected pulse evolves with time. The
continuum component of the wave function not only trav-
els and spreads, but it also develops a large phase gradient
across the wave packet as indicated by the rapidly oscillat-
ing real part of the wave function.

Using generalized close coupling, the wave function in
Fig. 1 was calculated with 30 basis functions, f

B
i �x�, plus

30 more, f
F
i �x, t�. The widest pseudostate f

B
i �x� in this

basis set goes to zero by 100 a.u.; thus, using only the
f

B
i �x� set with standard close coupling, it is impossible

to represent the wave function shown in Fig. 1(b), whose
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FIG. 1. The amplitude (thick line) and real part (thin line) of
the wave function at (a) t � 10 a.u. and (b) t � 100 a.u. calcu-
lated by the generalized close-coupling method. The dotted line
in (a) represents the amplitude of the wave function computed
using only standard pseudostates.

extent exceeds 300 a.u. Surprisingly, employing only the
f

B
i �x� pseudostates does a poor job even at t � 10, when

the wave function is only 30 a.u. wide [see the dotted line
in Fig. 1(a)]. The representation is poor because stan-
dard pseudostates have no spatial phase gradient; thus,
the f

B
i �x� basis set alone cannot track the phase evolution

of c�x, t�. Adding the time-dependent functions f
F
i �x, t�,

which analytically include the spreading and phase evolu-
tion of the ejected wave packet, allows accurate propaga-
tion of the wave function to arbitrarily large times.

As the continuum component of the wave function
spreads, the pseudostate amplitudes go to zero like 1�t
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FIG. 2. The real part of the scaled and unscaled wave
functions corresponding at (a) t � 10 a.u. [cf. Fig. 1(a)] and
(b) t � 100 a.u. [cf. Fig. 1(b)]. Note that the unscaled wave
function has been partially scaled as indicated to allow direct
comparison. The scaling factor in (a) is R � 3.48 a.u.; and in
(b) R � 31.9 a.u.
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eventually transferring over completely to the f
F
i �x, t�

basis functions. As stated earlier, we add in each f
F
i �x, t�

when its overlap with the corresponding f
B
i �x� goes

under a threshold of 90%. Changing this threshold does
not change the resulting wave function within the desired
accuracy of the present calculation.

Turning now to the scaling approach, we show the real
part of the scaled wave function in Figs. 2(a) and 2(b),
corresponding to Figs. 1(a) and 1(b), respectively, and we
compare the solution of the scaled TDSE with the usual un-
scaled TDSE. The ejected packet is clearly much simpler
after introducing scaling; its position, height, and width all
remain essentially constant with t and, in contrast to the
unscaled solution, no phase gradient develops. The bound
component of the wave function shrinks with time and
shows the expected exp�2iEt� [see Eq. (6)] phase rela-
tive to the continuum component. For Fig. 2, we have
used the scaling factor

R�t� �

Ω
1, t , 0,
�1 1 0.01t4�1�4, t $ 0.

This choice provides a smooth transition from R�t� � 1 at
negative t to the desired linear function of t asymptotically.

To produce the scaled solution in Fig. 2, we solved the
scaled TDSE Eq. (4) using sixth order basis splines and
a Crank-Nicholson propagation scheme [3]. To cover the
range 216 to 16 in the scaled coordinate j (210 to 5 is
shown in the figure), only 81 splines were required —even
for the solution at t � 100 a.u. The splines were dis-
tributed symmetrically about j � 0 with a square root dis-
tribution to pack more splines near j � 0. In fact, 21 of
the 81 splines were in the interval 21 to 1 in order to rep-
resent the shrinking bound state. Examining the real part
of the unscaled wave function in Fig. 2, one can clearly see
that direct solution of the TDSE would require at least an
order of magnitude more basis splines to represent all of
the oscillations due to the phase gradient. Since the CPU
time for Crank-Nicholson propagation with basis splines
scaled linearly with the number of splines, this enormous
reduction in the number of splines translates directly into
computational savings. Thus, the advantage of the simpler
representation of the continuum far outweighs the artificial
shrinking introduced in the bound states, and one does not
have to resort to the schemes mentioned in the introduction
for absorbing outgoing flux.

The scaled Schrödinger equation in Eq. (4) represents a
natural framework in which to study time-dependent quan-
tum phenomena, and it can easily be combined with exist-
ing techniques for solving the TDSE. We also present a
straightforward extension to close coupling with Gaussian
functions, employed ubiquitously in quantum chemistry
and atomic physics. While the scaled TDSE is more gen-
erally applicable, its one drawback is that the bound states
shrink with time. The generalized close-coupling approach
avoids this shrinking by including bound and continuum
components separately, but is confined to systems where a
Gaussian basis is appropriate.

We have presented two complementary approaches to
solving the time-dependent Schrödinger equation. Both
approaches extend existing theoretical methods in a way
that allows for efficient representation of the complete
wave function without putting restrictions on its spatial
extent. Having accounted for the basic properties of the
ejected component of the wave function, the expansion
and increasing phase gradient, our approaches allow for
numerical propagation of the wave function to very long
times.
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