
VOLUME 85, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 DECEMBER 2000

5082
High Harmonic Generation Beyond the Electric Dipole Approximation
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A generalization of the analytical theory of high harmonic generation in the long wavelength limit
and in the single active electron approximation is developed taking into account the magnetic dipole and
electric quadrupole interaction. Quantum mechanical and classical theories are found to be in excel-
lent agreement, which allows one to explain the influence of multipole effects in terms of an intuitive
picture. For Ti:S lasers (0.8 mm) multipole contributions are found to be small below an intensity of
about 1017 W�cm2, at which harmonic radiation with photon energies of several keV is generated. This
promises the extension of high harmonic generation well into the sub-nm wavelength regime.

PACS numbers: 32.80.Rm, 42.50.Hz, 42.65.Ky
High harmonic generation (HHG) in noble gases [1] is
a promising source for the generation of coherent XUV
(extreme ultraviolet) radiation that is about to open new
research fields, such as XUV nonlinear optics [2] and at-
tosecond pump-probe spectroscopy [3]. The shortest har-
monics generated so far have a photon energy of 0.5 keV
[4,5]. Currently, great effort is invested to extend HHG
into the x-ray regime with photon energies above 1 keV,
where further ground breaking applications would become
possible. For example, the short pulse duration and high
coherence of a few-keV harmonic source would make
time resolved x-ray spectroscopy experiments [6] on an
unprecedented time scale possible, allowing the observa-
tion of fundamental dynamical processes in matter, as, for
example, the making and breaking of chemical bonds.

At present the main limitation for HHG at wavelengths
below 10 nm is due to free electron induced dephasing be-
tween fundamental and harmonic field [2]. However, there
are indications that the limitations introduced by dephas-
ing can be overcome. Phase matched harmonic growth
was already demonstrated experimentally at low harmonic
orders [7] and, recently, numerical calculations revealed a
phase matching mechanism that is predicted to work effi-
ciently in the above keV photon energy range [8]. Assum-
ing that the phase matching problem can be solved, the
question arises of which is the shortest wavelength that
can be generated by HHG in principle. The ultimate limi-
tation of HHG arises from the large velocity and therewith
from the large electron excursion amplitude required for
the generation of extremely high harmonics. At a laser
intensity of 2 3 1016 W�cm2, necessary for the genera-
tion of above keV harmonic radiation, the variation of the
laser field over the excursion amplitude a0 becomes of the
order of ka0 � 0.1, with k being the absolute value of
the laser wave vector. Then multipole contributions have
to be taken into account [9]. While in the electric dipole
approximation used commonly for the analysis of HHG
[10] the ionized electron performs a quiver motion exclu-
sively in the direction of the laser polarization, multipole
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effects introduce an additional force in the direction of the
wave vector of the laser field. As a result, the center of the
wave packet tends to miss the parent ion, which can lead
to a drastic reduction of the efficiency of HHG.

In the present paper we develop an analytical solu-
tion of the 3D Schrödinger equation for a single atom
(ion) in a strong laser pulse, including lowest order mul-
tipole effects, which comprise the magnetic dipole and
the electric quadrupole contribution. The solution is used
to quantify the limitations of HHG introduced by multi-
pole effects. Our theory generalizes previous theories of
HHG relying on the electric dipole approximation [11,12].
The results are found to be in excellent agreement with a
perturbative solution of the classical equation of motion,
which corroborates the validity of our analysis and makes
a simple interpretation of the quantum mechanical theory
possible. The quantum mechanical calculation yields a
simple formula that determines the onset of multipole
contributions to HHG. For example, for HHG with a
Ti:sapphire laser in He1 ions multipole effects are small
for intensities below 1017 W�cm2 allowing in principle the
generation of harmonic radiation with photon energies of
several keV.

The starting point of our derivation is the Schrödinger
equation for a single electron atom in cgs units and in the
velocity gauge given by

ih̄≠tC �
1

2m

∑
ih̄= 1

e
c

A�r, t�
∏2

C 2
Ze2

r
C , (1)

where m, e, and Z are the electron mass, electron charge,
and nuclear charge, respectively, C is the wave function,
= � �≠x , ≠y , ≠z�, and ≠t,x,y,z refer to the partial time and
space derivatives, respectively. The vector potential is
related to the electric and magnetic fields by E�r, t� �
2�1�c�≠tA�r, t� and B�r, t� � = 3 A�r, t�, respectively.
We assume that the laser field is polarized in the x direction
and propagates in the z direction, A�r, t� � ���A�z, t�, 0, 0���.
This gives for the electric and magnetic field E�r, t� �
���E�z, t�, 0, 0��� and B�r, t� � ���0, B�z, t�, 0���.
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The Schrödinger equation (1) is solved by expanding
the vector potential to first order in the space coordinate,
r � �x, y, z�, which results in A�z, t� � A�t� 1 z≠zA�t�.
Throughout the paper we use the notation F�z � 0, t� �
F�t� for F � A, ≠zA, E, B. The first order expansion of
A corresponds to taking into account the magnetic dipole
and the electric quadrupole interaction. Relativistic effects,
such as the mass correction, can be neglected up to y�c �
0.2, which is realized at a Ti:sapphire peak intensity of
�1017 W�cm2. Here c is the vacuum light velocity, y �
E0�v is the electron velocity, E0 is the peak electric field,
and v is the circular frequency.

For the solution of Eq. (1) we use the ansatz

C�r, t� � exp

µ
iWbt

h̄

∂ µ
je0� 1

Z
d3P b�P, t� jP�

∂
, (2)

where 2Wb is the energy of the ground state and
b�P, t� is the amplitude of the (plane wave) continuum
state jP� � �2p h̄�23�2 exp�iPr�h̄�. Note that P is the
canonical momentum, which is related to the classical
momentum by p � P 2 �e�c� �A�t� 1 �r=�A�t��. The
ground state of the Schrödinger equation (1) in the veloc-
ity gauge je0� differs from the ground state obtained in the
length gauge j0�. The two ground states are related by
the gauge transformation je0� � j0� exp�ix�r, t��, where
x � e��h̄c� �xA�t� 1 �1�2�xz≠zA�t��. In order to be con-
sistent with the expansion of A in Eq. (1), the vector poten-
tial in x and in the definition of p was also expanded to first
order in r. For the fully r-dependent expressions see, for
example, Ref. [13]. The correctness of our perturba-
tive approach was checked by transforming Eqs. (1)
and (2) to the length gauge. In the limit of the dipole
approximation the ansatz (2) becomes equivalent to the
ansatz used by Lewenstein et al. in the length gauge
[11]. Applying the gauge transform to the first order
expansion of Eq. (1) gives the Schrödinger equation in
the length gauge, where the laser electron interaction is
determined by the potential Hi � Hed 1 Heq 1 Hmd .
Here Hed � 2exE�t�, Heq � 2�xz�2�≠zE�t�, and
Hmd � ih̄e��2mc�B�t� �z≠x 2 x≠z� are the electric
dipole, electric quadrupole, and magnetic dipole moment,
respectively.

Integration of Eq. (1) by using the ansatz (2) yields

b�V , t� � 2
i
h̄

Z t

2`
dt0 �V 2 T�t0� jHi�t0�je0�

3 exp

∑
2

i
h̄

S�V , t, t0�
∏

, (3)

where the quasiclassical action S�V , t, t0� is given by

S�V , t, t0� �
Z t
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dt00

3

(
1

2m

∑
V 2 T�t00� 2

e
c

A�t00�
∏2

1 Wb
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(4)
For the integration of Eq. (1) we have used the variable
transformation V � P 1 T�t� with Tx � 0, Ty � 0,
and Tz � 2e��mc�

R
dt �Px 2 �e�c�A�t��≠zA�t�. We

assumed that the vector potential may be written as
A�z, t� � A�t 2 z�c�; i.e., vacuum propagation domi-
nates and propagation effects such as ionization induced
phase changes are small. Then the time integral in Tz

can be solved resulting in Tz � e��mc2� �PxA�t� 2

�e�2c�A2�t��. Finally, note that the multipole contribu-
tions �V 2 T�t0� jHi�t0�je0� in Eq. (3) arise from the gauge
transformed ground state je0�.

The multipole corrections to HHG in the exponent
of Eq. (3) dominate over those in the prefactor. There-
fore contributions from the transition matrix elements
Hmd and Heq are neglected in the prefactor to give

�V 2 T�t0� jHed�t0�je0�. To the same order of approxi-
mation the emission of HHG in the direction of the laser
field is determined by the second time derivative of the
dipole moment �F�r, t� jr̈jF�r, t��, and higher order
contributions arising from the magnetic dipole and electric
quadrupole terms can be neglected [14]. The electric
dipole moment including the multipole corrections in the
exponent is given by

xm�t� �
Z

d3V �e0jxjV 2 T�t��b�V , t� 1 c.c. (5)

Our calculation is limited to the long wavelength regime
g � v�2mWb�1�2��eE0� ø 1, where g denotes the
Keldysh parameter [15]. In this limit tunneling is the
dominant ionization mechanism, and the integrals in
Eq. (5) can be evaluated by a stationary phase integration
over P [11], and saddle point integration with respect to t,
where a singularity at the saddle point must be taken into
account. The equation determining the real part of the
saddle point t0 is given by Px�t, t0� 2 �e�c�A�t0� � 0,
where Px�t, t0� � e��c�t 2 t0��

Rt
t0

A�t0� dt0. Here t0 can
be interpreted as the time of birth of the electron trajectory
which returns at time t to the parent ion and generates
high harmonic radiation. Calculation of the integrals
yields the final result

xm�t� �
X
t0

h exp

∑
2

�P2
zd 1 2mWb�3�2

3mh̄ejE�t0�j

∏
3 exp

∑
2

i
h̄

�Sd 1 Sm�
∏

1 c.c. , (6)

where the real exponential function arises from the ioniza-
tion probability at time t0 and the imaginary exponential
function determines the phase picked up by the electron
along its trajectory between birth and recombination
time. The sum extends over all birth times t0, but in
practice, for given t, only a few birth times t0 make a
significant contribution. The phase is determined by the
classical action Sd�t, t0� �

Rt
t0

dt0 �1�2m� �Px�t, t0� 2 �e�
c�A�t0��2 1 Wb calculated in the electric dipole ap-
proximation and by the multipole contribution to the
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classical action, Sm�t, t0� � �1�2m�
Rt

t0
dt0 	Pz�t, t0� 2

e��mc2� �Px�t, t0� 2 e��2c�A2�t0��
2. Further, the momen-
tum Pzd � 2Pz�t, t0� 1 1��2mc�P2

x �t, t0� and Pz�t, t0� �
e2��mc3� 	A2�t0� 2 1��2�t 2 t0��

Rt
t0

A2�t0� dt0
. Finally,
as we have neglected multipole effects in the preexpo-
nential factor, the constant h in Eq. (6) refers to the
electric dipole preexponential expressions for HHG, as,
for example, given in Ref. [2].

The quantum mechanical result (6) has an intuitive
classical interpretation that corroborates the validity of our
analysis; see Fig. 1. This becomes evident from a pertur-
bative solution of the classical equation of motion mr̈ �
eE 1 �e�c�v 3 B. For y�c ø 1 terms proportional to
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FIG. 1. Schematic diagram of the influence of the Lorentz
force on HHG. The laser field is polarized in the x direction and
propagates in the z direction. (a) The momentum distribution
of the electron wave packet at its time of birth. The electron
trajectories corresponding to the initial momenta (1) and (2) in
(a) are plotted in (b). The electron trajectory (1) is born with
zero velocity in the z direction. During oscillation in the laser
polarization direction the Lorentz force pushes the electron in
the z direction. As a result it misses the parent ion during its
return and HHG cannot take place. In contrast to that electron
trajectory (2) is born with an initial momentum pz�t0� � 2Pzd ,
which exactly compensates the effect of the Lorentz force so
that the electron directly returns to the nucleus and HHG takes
place. The ionization probability of (2) is lower than the peak
ionization probability for pz�t0� � 0, which results in a reduc-
tion of HHG due to the Lorentz force. The lower graph in
(b) shows the relation between classical and quantum mechanics.
The wave function of the returning electron is plotted versus z.
The peak of the wave function which is shifted in z corresponds
to the electron trajectory (1). The part of the wave function that
overlaps with the nucleus corresponds to trajectory (2).
5084
B may be neglected in the equation along the x direction.
Integration subject to the initial condition, that the electron
is born with zero velocity at time t0, determines the
momentum of the electron in the x direction as m �x�t� �
px�t� � 2�e�c� �A�t� 2 A�t0��. To obtain the momentum
and motion in the z direction, px is inserted into the equa-
tion of motion for z̈. Integrating twice we obtain m�z�t� 2

z�t0�� � 1��2mc�
Rt

t0
p2

x�t0� dt0 1 pz�t0� �t 2 t0� � �Pzd 1

pz�t0�� �t 2 t0�, where pz�t0� refers to the electron birth
momentum in the z direction. Efficient HHG requires
recollision of the electron with the parent ion, i.e.,
z�t� � z�t0�, so that the electron initial momentum is de-
termined as pz�t0� � 2Pzd with Pzd $ 0. The probability
for starting the electron with nonzero initial momentum
2Pzd is given by quantum mechanical tunneling theory
[16] as exp�2�P2

zd 1 2mWb�3�2����3mh̄ejE�t0�j����. This
is in exact agreement with the full quantum mechanical
result, Eq. (6).

The dependence of the real exponential factor in Eq. (6)
on Pzd leads to a decrease of the high harmonic yield.
The magnitude of the decrease close to the harmonic cut-
off, where the quiver energy and therewith the multipole
effects are largest, can be estimated using the relation
P2

zd�t� � U2
p�c2, which was verified by direct numeri-

cal evaluation. Here Up � �eE0�2�4mv2 is the pondero-
motive potential, and E0 denotes the peak electric field.
Inserting the inequality in Eq. (6), expanding the term
�U2

p�c2 1 2mWb�3�2, and substituting jE�t0�j by E0 for
harmonics close to the cutoff, the ratio of multipole to elec-
tric dipole moment close to the cutoff is found to beÇ

xd

xm

Ç2
� exp

∑
a0Up

4a0mc2

∏
, (7)

where a0 � eE0��mv2� is the electron excursion ampli-
tude in the direction of the laser polarization and a0 �
h̄�

p
2mWb is the Bohr radius. The influence of multipole

effects on HHG scales with the ratio of the electron pon-
deromotive energy to its rest energy.

As a numerical example, based on Eq. (6) we have
calculated HHG in He1 ions (Wb � 54.4 eV) with the
following laser parameters: l0 � 0.8 mm, full width at
half maximum pulse duration tp � 5 fs, peak intensity
I0 � 5 3 1016 W�cm2, and a sech pulse shape. Figure 2
shows the (Fourier transformed) second derivative of the
dipole expectation value calculated in dipole approxima-
tion (jẍdj

2, dotted line) and calculated including multipole
effects in lowest order (jẍmj

2, solid line). Comparison of
the two spectra shows that frequency dependent changes
of the harmonic yield around the cutoff, which are mainly
due to the multipole phase Sm, remain small with only
a slight shift of the cutoff frequency towards higher har-
monics. The effect of the Lorentz force increases with
electron velocity and therewith is stronger for higher har-
monic orders. As a result, the ratio between the electric
dipole and the multipole harmonic spectrum increases for
higher harmonic orders. The maximum ratio in Fig. 2 is
�2, revealing that multipole effects are insignificant in
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FIG. 2. HHG in He1 ions (Wb � 54.4 eV) with the following
laser parameters: l0 � 0.8 mm, full width at half maximum
pulse duration tp � 5 fs, peak intensity I0 � 5 3 1016 W�cm2,
and a sech pulse shape. The dotted and the full lines denote the
Fourier transform of the second derivative of the electric dipole
(jẍd j

2) and of the multipole (jẍmj
2) moment, respectively. The

inset shows a part of the harmonic spectrum close to the cutoff
between N � 3600 and 4200.

this parameter range. Inserting the parameters of Fig. 2
in Eq. (7) we find jxd�xmj

2 � 3 in fair agreement with the
numerical result. Equation (7) reveals that jxd�xmj

2 � 20
for I0 � 1017 W�cm2; i.e., multipole limitations of HHG
may become severe in an intensity range, where relativis-
tic effects must be taken into account. Finally, the plateau
in Fig. 2 extends at nearly constant intensity to a harmonic
order N � 4000 which corresponds to an x-ray photon en-
ergy of 6 keV. As a result, HHG holds in principle the po-
tential for the realization of a revolutionary pulsed x-ray
source that supplies ultrashort (sub-10 fs) pulses in the
several keV region. To determine whether this single
atom response can be exploited for efficient harmonic
generation, effects of propagation in the medium must
be included. First studies at somewhat lower intensi-
ties indicated the possibility of phase matching for above
keV harmonic radiation [8]. Extension of these results
to the present intensities will be the subject of future
investigations.

In conclusion, the dominant multipole effect in high har-
monic generation is the radiation pressure. This mecha-
nism is not limited to harmonic generation, but will equally
affect any process in atomic physics that depends on the
recollision of the electron with the parent ion [10], such
as nonsequential laser ionization and above threshold ion-
ization. The analytic theory presented here gives a conve-
nient and intuitive description of multipole effects in strong
field atomic physics without compromising with respect to
the physical model, most importantly by keeping all three
spatial dimensions. This is particularly important, since
complete numerical calculations in the intensity regime
where multipole and relativistic effects become dominant
are extremely demanding and still unchallenged in three
dimensions. Finally, our method not only can quantify the
dominant multipole effects, but also holds the potential to
account for relativistic corrections based on the Volkov so-
lutions of the Dirac equation [17].
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