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Nonperturbative Gluon Radiation and Energy Dependence of Elastic Scattering
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The energy dependence of the total hadronic cross sections is caused by gluon bremsstrahlung which
we treat nonperturbatively. It is located at small transverse distances about 0.3 fm from the valence
quarks. The cross section of gluon radiation is predicted to exponentiate and rise with energy as sD with
D � 0.17 6 0.01. The total cross section also includes a large energy independent Born term which
corresponds to no gluon radiation. The calculated total cross section and the slope of elastic scattering
are in good agreement with the data.

PACS numbers: 12.38.Lg, 13.85.Dz
The dynamics of energy dependence of the hadronic
total cross sections is a long-standing challenge since
1973 when this effect was first observed at the ISR
(Intersecting Storage Rings, the collider at CERN). In
deep inelastic scattering the source for the rising total
cross section for interaction of highly virtual photons
is well understood in QCD as caused by an intensive
gluon bremsstrahlung [1,2]. Indeed, radiation of each
gluon supplies an extra lns and lnQ2. This is a specific
regime of radiation when a q̄q fluctuation of the photon
of a tiny size �1�Q radiates gluons at much larger
transverse separations.

It is difficult to extend the perturbative results to soft
hadronic collisions because it is quite a different regime
where the approximations made in the perturbative case
break down. Namely, gluon radiation giving rise to
the energy dependence of the total cross section occurs
at rather small transverse distances around the valence
quarks, r0 � 0.3 fm, which are much smaller than the
mean interquark spacing in light hadrons. This conclusion
follows from the analysis [3] of the data for diffractive
gluon radiation based on the light-cone approach when the
effective nonperturbative interaction of radiated gluons
is included.

The smallness of the gluon clouds of the valence quarks
is confirmed by the study of the gluon form factor of the
proton employing QCD sum rules [4]. The Q2 dependence
of the form factor turns out to be rather weak correspond-
ing to a small radius of the gluon distribution which was
estimated at the same value r0 � 0.3 fm.

Further evidence for a short gluon-gluon correlation
length l � 0.3 fm arises in the stochastic vacuum model
of Dosch and Simonov [5,6], as it was measured on the
lattice [7]. In the case of a poorly populated gluon cloud
(only about one gluon is radiated by a valence quark at
available energies; see below) this corresponds to the cor-
relation radius between the quark and the gluon.

The same size �0.3 fm emerges from the Shuryak’s in-
stanton liquid model [8] as the instanton size which con-
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trols the mean radius of the sea surrounding a valence
quark and by many phenomenological analyses.

In the Gribov’s theory of confinement [9,10] the same
distance �0.3 fm should correspond to the critical regime
related to breaking of chiral symmetry. Namely, at smaller
distances, a perturbative quark-gluon basis is appropriate,
while at larger separations quasi-Goldstone pions emerge.
The corresponding critical value of the QCD running con-
stant ac � 0.43 evaluated in [9] turns out to be very close
to our estimate (see below) of as corresponding to gluon
radiation separated by 0.3 fm. The value of as is crucial
for our evaluation of the energy dependence of the gluon
bremsstrahlung.

It is quite plausible that all these observations are the
manifestations of the same dynamics; however, it is still
unclear how to make a Lorentz boost in these approaches.
This is the advantage of the light cone treatment of non-
perturbative gluon radiation [3] which seems to be best de-
signed for calculating the energy dependence of the total
cross section. We believe that the nonperturbative inter-
action of gluons introduced in [3] as a light-cone poten-
tial is an effective manifestation of properties of the QCD
vacuum. A similar scale �0.3 fm found in all these ap-
proaches supports this conjecture.

An interesting attempt to implement the nonperturbative
gluon interaction into the Pomeron ladder building was
made recently by Kharzeev and Levin [11] and Shuryak
[12]. They found that the radiation of colorless pairs of
gluons is a part of the leading-log approximation since
each extra power of the coupling as cancels due to the
strong glue-glue interaction. The radiated glueballs are
not clustering around the valence quarks, but spreading all
over the hadron. The estimated D � 0.05 [12] is about
twice as small (and even more so if corrected for uni-
tarity) as the data need. Although the scale for a

0
P �

1�M2
0 seems to be correct, an extra factor D�4 makes it

too small.
We start calculating the energy dependence of the total

cross section, summing up the contributions of different
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Fock components of the incident hadron,

shN
tot �

X
n�0

shN
n . (1)

To avoid double counting, we sum over cross sections sn

of physical processes corresponding to the radiation of
n gluons.

The lowest Fock component of a hadron contains only
valence quarks. The corresponding Born term in the total
cross section has the form (for the sake of simplicity we
assume that the incident hadron is a meson)

shN
0 �

Z 1

0
daq

Z
d2R jCh

q̄q�aq, R�j2sN
q̄q�R� . (2)
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Here the Fock state wave function Ch
q̄q�aq, R� depends

on the transverse q 2 q̄ separation R and on the fraction
aq of the light-cone momentum of the pair carried by
the quark. The cross section sN

q̄q�R� of interaction of the
valence q̄q dipole with a nucleon cannot be calculated
perturbatively since the separation R is large. According
to [13] this energy independent term has no relation to the
smallness of the spots (gluon clouds) in the hadron.

The next contribution to shN
tot comes from the radiation

of a single gluon. The radiation is possible only due to the
difference between the cross sections for the q̄q and q̄qG
Fock components; otherwise no new state can be pro-
duced [3]. The cross section of radiation of a single gluon
reads [3]
shN
1 �

Z 1

0
daq

Z
d2R jCh

q̄q�R, aq�j2
9
4

Z
aGø1

daG

aG

Z
d2r �jCq̄G� �R 1 �r , aG�j2sN

q̄q� �R 1 �r � 1 jCqG��r , aG�j2sN
q̄q�r�

2 ReC�
qG��r , aG�Cq̄G� �R 1 �r , aG�

3 �sN
q̄q� �R 1 �r � 1 sN

q̄q�r� 2 sN
q̄q�R��	 . (3)
Here aG is the fraction of the quark momentum carried by
the gluon, and �r is the quark-gluon transverse separation.
The three terms in the curly brackets correspond to the
radiation of the gluon by the quark, by the antiquark, and
to their interference, respectively.

The nonperturbative wave function for a quark-gluon
Fock component is derived in [3]. Neglecting the quark
mass, the wave function reads

CqG��r , aG ø 1� � 2
2i
p

r
as

3

�e� ? �r
r2 e2r2b2

0 �2, (4)

where �e is the polarization vector of the massless gluon.
The parameter b0 � 0.65 GeV characterizing the nonper-
turbative quark-gluon interaction is fixed by the data on
large mass diffractive dissociation corresponding to the
triple-Pomeron limit. It leads to quite a short mean quark-
gluon separation r0 �

p

r2� � 1�b0 � 0.3 fm, which is

small relative to the hadronic size. Therefore, only one
or the other of the first two terms in (3) can be large, while
the interference one can always be neglected. In this case,
the integration in (3) is easily performed,

shN
1 � N

4as

3p
ln

µ
s
s0

∂
9C

4b2
0

. (5)

Here we assume that the approximation sN
q̄q�r� � Cr2 is

valid for r � 1�b0. N is the number of valence quarks,
ln�s�s0� � ln��aG�max��aG�min�, where �aG�min � 2b2

0�s,
but �aG�max is ill defined. It should be sufficiently small to
use the wave functions (3). This leads to the condition to
s0 ¿ 3 GeV2. At high energy s1 has little sensitivity on
s0 which we fix at s0 � 30 GeV2 for further applications.

The radiation of each new, nth gluon can be treated as
radiation by a color triplet which is an effective quark sur-
rounded by n 2 1 gluons. It should be resolved by the soft
interaction with the target to be different from the radiation
of n 2 1 gluons; i.e., the radiation cross section is propor-
tional to the difference between the total cross sections of
the two subsequent Fock states which is 9C�4b2

0 . This can
also be proved using a 1�Nc expansion and the dipole rep-
resentation of Mueller [14]. Since the radiation of a gluon
with aG ø 1 does not affect the impact parameter of the
radiating quark, all the quark lines in the final state cancel
with the same lines in the initial state (see the prescription
for calculating the radiative cross section in [15]), except
for the radiation of the nth gluon. Thus, sn for quark-
proton interaction in the leading-log approximation reads

sqN
n �

1
n!

∑
4as

3p
ln

µ
s
s0

∂∏n 9C

4b2
0

. (6)

Summing up the powers of logarithms in (1) we arrive
at the following expression for the total cross section:

s
hp
tot � s̃

hp
0 1 N

9C

4b2
0

µ
s
s0

∂D

, (7)

with

D �
4as

3p
, (8)

and s̃
hp
0 � s

hp
0 2 9C�4b2

0 . The soft Pomeron intercept
aP�0� � 1 1 D can be evaluated provided that the QCD
coupling as is known.

In Gribov’s confinement scenario, chiral symmetry
breaking occurs when the running coupling as exceeds the
critical value as � ac � 0.43 [9]. This should happen at
a distance of the order of the size of a constituent quark
�0.3 fm. Therefore, this value can be used in (8).

One can also calculate the mean 
as� for nonperturba-
tive gluon radiation averaging over transverse momenta kT

of the radiated gluons. The popular way to extend the run-
ning QCD coupling as�k2

T � down to small kT is a shift of
the variable k2

T ) k2
T 1 k2

0 , where k2
0 � 0.25 GeV2 was
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evaluated in [10] using the dispersive approach to calcu-
lating higher twist effects in hard reactions [16]. The non-
perturbative interaction of the radiated gluons drastically
suppresses small transverse momenta, pushing 
k2

T � to
higher values which lowers as. We use the transverse
momentum gluon distribution calculated in [3] in the
light-cone approach in terms of the universal color dipole
cross section [17]. We calculated 
as� with a simple
parametrization s�r� ~ 1 2 exp�r2�r

2
0�. For a reason-

able variation of r0 � 0.3 1 fm the mean coupling is in
the range 
as� � 0.38 0.43 which is very close to the
critical value mentioned above [9]. Taking the midvalue

as� � 0.4 we get from (8)

D � 0.17 6 0.01 . (9)

This value is about twice as large as the one suggested
by the data for the energy dependence of total hadronic
cross sections [18]. However, the radiative part is a rather
small fraction of the total cross section (at medium high
energies). A structure similar to (7) with a large D was
suggested in [19] (with quite a different motivation) and
proved to agree well with the data.

The factor C in the second term in (7) can also be evalu-
ated. We calculated the dipole cross section with the gluon
effective mass 0.15 GeV (to incorporate confinement) and
as � 0.4 and found C � 2.3 at r � 1�b0. Thus, the en-
ergy dependent term in (7) is fully determined.

The cross section (7) apparently violates the Froissart
bound and one should perform unitarity corrections. In-
deed, the partial elastic amplitude shows a precocious onset
of unitarity restrictions at small impact parameters impor-
tant even at medium high energies [20].

Following [18,21] we assume that the t dependence of
the pp elastic amplitude is given by the Dirac electro-
magnetic form factor squared. Correspondingly, the mean
square radius 
r̃2

ch� evaluated in [21] should be smaller
than 
r2

ch�.
For the dipole parametrization of the form factor the

partial elastic amplitude which is related via unitarity to
s

pp
n , given by (2) and (6), takes the form

Imgpp
n �b, s� �

s
pp
n �s�

8pBn
y3K3� y� , (10)

where K3�y� is the third order modified Bessel function
and y � b

p
8�Bn. The slope parameter grows linearly

with n due to the random walk of radiated gluons with a
step 1�b2

0 in the impact parameter plane, Bn � 2
r̃2
ch��3 1

n�2b2
0 .

We unitarize the partial amplitude ImgP�s, b� �P
n�0 Imgn�s, b� using the quasieikonal model [22],

ImGP�b, s� �
1 2 exp�2D�s� ImgP�b, s��

D�s�
, (11)

where D�s� 2 1 � ssd�s��sel�s� is the ratio of the single
diffractive to elastic cross sections. It is approximately
equal to 0.25 at the lowest ISR energy and slightly de-
creases with energy ~ s20.04 [23,24]. Note that good re-
sults can also be achieved with a different unitarization
scheme similar to one suggested in [19]. The details will
be presented elsewhere.

In order to calculate the total cross section, stot �
2

R
d2b ImG�b, s�, one needs to fix the energy independent

term with n � 0 in (10). This can be done comparing with
the data for stot at any energy sufficiently high to neglect
Reggeon contributions. We used the most precise data [25]
at

p
s � 546 GeV and fixed s̃0 � 39.7 mb.

The predicted energy dependence of s
pp
tot is shown by

the dashed curve in Fig. 1 which is in good agreement with
the data at high energy [26], but apparently needs Reggeon
corrections towards low energies.

We added a Reggeon term ImGR�s, b� �1 2 ImGP�s,
b�� screened by unitarity corrections, which was fitted
independently for pp and p̄p, s

pp
R � 17.8 mb�

p
s�s0,

s
p̄p
R � 32.8 mb�

p
s�s0. The fitted Reggeon slope is

BR � R2
R 1 2a

0
R ln�s�s0�, where a

0
R � 0.9 GeV22 and

R2
R � 3 GeV22.
The results are shown by the solid curves of Fig. 1 (pp

bottom curve and p̄p upper curve).
As soon as the partial amplitude (11) is known, we

are in a position to predict the slope of elastic scattering
at t � 0, Bel�s� � 
b2��2, where averaging is weighted
by the partial amplitude (11). The results exhibit good
agreement when compared with the pp and p̄p data [26]
in Fig. 2.

Although the value of the slope essentially depends
on our choice of 
r̃2

ch� in (10), the predicted energy de-
pendence, i.e., the effective value a

0
P , is fully defined

by the parameter b0 fixed in [3]. Indeed, each radiated
gluon makes a “step” �1�b2

0 � �0.3 fm�2 in the impact
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FIG. 1. Data for total pp (full circles) and p̄p (open circles)
cross section [26] and the prediction of Eq. (10) for the energy
dependence of the Pomeron part (dashed curve). The solid
curves include Reggeon contributions fitted to the data.
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FIG. 2. Data for the elastic slope [26] and our predictions. The
upper and lower curves and open and full circles correspond to
p̄p and pp, respectively.

parameter plane leading to the rising energy dependence
of the elastic slope. Eventually, at very high energies the
approximation of small gluon clouds breaks down but the
mean number of gluons in a quark 
n� � D ln�s�s0� re-
mains quite small even in the energy range of colliders. It
is only 
n� � 0.7 1 at the ISR and reaches about two glu-
ons at the Fermilab Tevatron. Correspondingly, the mean
square of the quark radius grows from 0.06 to 0.18 fm2

which is still rather small compared to the mean square of
the charge radius of the proton.

Summarizing, the strong nonperturbative interac-
tion of radiated gluons substantially shrinks the gluon
clouds around the valence quarks. These spots are
small (�0.3 fm) compared to the hadronic radius, but
the gluon radiation grows with energy as sD, where
D � 0.17 6 0.01. Such a steep rise does not contradict
the data since this fraction of the total cross section is
rather small (it contains a factor 1�b2

0 � 1 mb). A large
energy independent fraction comes from the Born term
which corresponds to scattering of the valence quark
skeleton without gluon radiation. A very soft interaction
which cannot resolve and excite the small spots contributes
to this term. It cannot be reliably predicted and is fixed by
data, while the energy dependent term is fully calculated.
The results are in good agreement with the data for total
pp and p̄p cross sections and elastic slopes.

Note that although we have some room for fine tuning
in the the parameters (C, s0, 
r̃2

ch�), the results are rather
insensitive and the agreement with data is always pretty
good. We have also tried a different unitarization scheme
suggested in [19] arriving at similar results.
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The details of calculations and further comparison with
elastic scattering data will be published elsewhere.
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