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Chiral Symmetry, Quark Mass, and Scaling of the Overlap Fermions
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The chiral symmetry relation and scaling of the overlap fermions are studied numerically on the
quenched lattices at 3 couplings with about the same physical volume. We find that the generalized
Gell-Mann-Oakes-Renner relation is satisfied to better than 1% down to the smallest quark mass at
m0a � 0.006. We also obtain the quark mass from the PCAC relation and the pseudoscalar masses.
The renormalization group invariant quark mass is shown to be fairly independent of scale. The p and
r masses at a fixed mp�mr ratio indicate small O�a2� corrections. It is found that the critical slowing
down sets in abruptly at a very small quark mass close to those of the physical u and d quarks.

PACS numbers: 11.15.Ha, 11.30.Rd
Recent advances in chiral fermion formulation on the
lattice hold great promise in implementing chiral fermions
for QCD at finite lattice spacing [1]. There are distinct
advantages over the previous formulations. For example,
the Wilson fermion breaks chiral symmetry at finite lat-
tice spacing a and, therefore, the task of extrapolating the
Monte Carlo results to the continuum and chiral limits re-
quires fine tuning and is often difficult. In this case, one
could not expect low energy theorems to be reproduced at
finite lattice spacing. Similarly, the staggered fermion can
be formulated only with four flavors with anU�1� subgroup
of the flavor nonsinglet chiral symmetry. At finite lattice
spacing where the numerical calculations are carried out,
the flavor symmetry is broken. Furthermore, the anoma-
lous chiral Ward identity does not hold for these fermions
unless at the continuum limit. This makes the analysis of
anomaly on the lattice rather unclear. There is no unam-
biguous identification of the fermion zero modes with the
topology of the background gauge field. These difficulties
due to the coupling of chiral symmetry with the continuum
limit have rendered the studies of low energy phenomenol-
ogy of QCD on the lattice unsettling.

The picture has been altered dramatically with the
advent of Neuberger’s overlap fermion [2] which is
derived from the overlap formalism [3]. All of the above-
mentioned impediments can be avoided pending pristine
numerical simulation. It is shown to have correct anomaly
and exact chiral symmetry on the lattice [3–5], and there
are no order a artifacts [6]. The overlap fermion has a
compact form in four dimensions and is easily employed
to derive low energy theorems, chiral symmetry relations,
and anomaly at finite lattice spacing. In this Letter, we
shall study the overlap fermion numerically. We test chiral
symmetry via the Gell-Mann-Oakes-Renner relation at
finite lattice spacing and check the scaling behavior of the
p and r masses. The preliminary results were reported
earlier [7]. We also obtain the quark mass from the chiral
Ward identity and verify that it is free from additive
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renormalization and the renormalization group invariant
quark mass is indeed independent of scale.

Neuberger’s Dirac operator has the following form for
the massive case [8]:

D�m0� � 1 1
m0a

2
1

µ
1 2

m0a
2

∂
g5e�H� , (1)

where e�H� � H�
p
H2 is the matrix sign function of H

which we take to be the Hermitian Wilson-Dirac operator,
i.e., H � g5Dw . Here Dw is the usual Wilson fermion
operator, except with a negative mass parameter 2r �
1�2k 2 4 in which kc , k , 0.25. We take k � 0.19
in our calculation which corresponds to r � 1.368.
The massless operator D�0� is shown [9] to satisfy the
Ginsparg-Wilson relation [10] �g5,D�0�� � D�0�g5D�0�.
The bare mass parameter m0 is proportional to the quark
mass without additive constant which we shall verify.

There are several numerical approaches to approximate
the sign function e�z� [11–14]. We adopt the optimal ra-
tional approximation [13] with a ratio of polynomials of
degree 12 in the Remez algorithm. We find the error to
the approximation of e�z� to be within 1025 in the range
[0.02, 2] of the argument z. In the range [0.0005, 0.02],
the error can be as large as 1%. To improve the accu-
racy of e�H� and hence the chiral symmetry property, the
smallest 10 to 20 eigenvalues of H2 with eigenvalues of
jHj less than 0.04 are projected out for exact evaluation
of the sign function from these eigenstates [13]. This
has the added benefit of reducing the number of iterations
for the multimass conjugate gradient inversion of H2 1 ci
in the inner loop by a factor of 3.5 or so. We checked
the unitarity of the matrix V � g5e�H�. For Vx � b, we
find jxyx 2 bybj � 1029. Since V is unitary we exploit
the identity �1 1 Vy� �1 1 V � � 2 1 V 1 Vy in order to
use the conjugate gradient algorithm on the Hermitian ma-
trix V 1 Vy instead of VyV which has a higher condition
number. Furthermore, since �V 1 Vy, g5� � 0, one can
use a chiral source, i.e., g5b � 6b to save one matrix
© 2000 The American Physical Society 5051
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multiplication [15] per iteration. In the present study, we
consider three lattices: 63 3 12 at b � 5.7, 83 3 16 at
b � 5.85, and 103 3 20 at b � 6.0, which have about
the same physical volume. With residuals at 1027, the
inner loop takes typically �200 250 iterations and is al-
most independent of the lattice volume. The outer loop
takes �40 110 iterations from the small to large lattice
volumes. Even for topological sectors with charge Q fi 0,
we find the critical slowing down is much milder than
that of the Wilson fermion and we found no exceptional
configurations. The critical slowing down sets in quite
abruptly when m0a , 0.006 for the sector with topology.
This is already very close to the physical u and d masses.
For comparison, to obtain the same pion mass as in the
present study at m0a � 0.006, it would take �600 conju-
gate gradient iterations to converge to a comparable residue
for the Wilson fermion at b � 6.0 on a 163 3 24 lattice.
This shows that the propagator for the overlap fermion is
about 503 more costly to calculate than that of the Wilson
fermion for these small quark masses.

The lattice chiral symmetry is reflected in the general-
ized Gell-Mann-Oakes-Renner (GOR) relation

m0a
Z
d4x 	p�x�p�0�
 � 2	c̄c
 . (2)

Since it is satisfied for each quark mass, lattice volume
and spacing, configuration by configuration, and for each
source [15,16], it serves as an economic test of chiral sym-
metry. Here p�x� � c̄g5�t�2�c is the pion interpolation
field and the quark propagator is the external one with
D21
c � �1 2 m0a�2�21�D21�m0� 2 1�2� [8,17]. Alter-

natively, one can use the bilinears �1 2 m0a�2�21c̄G�1 2

D�2�c for the operators and D21 as the propagator. We
utilize this relation in Eq. (2) as a check of the numerical
implementation of the Neuberger operator. We find that
for the lattices we consider the GOR relation is satisfied
very well (to within 1023) all the way down to the small-
est mass m0a � 2 3 1024 for the Q � 0 sector. For the
Q fi 0 sector, the presence of zero modes demands higher
precision for the approximation of e�H�.

For example, we show in Fig. 1 the ratio of the right to
left side of Eq. (2) for a typical configuration with topology
on the 63 3 12 lattice at b � 5.7 as a function of the
quark mass m0a. When only 10 smallest eigenmodes of
H2 are projected, we see that the ratio deviates from one
for small quark masses. For the smallest mass m0a �
0.006, it may deviate as much as 16%. The situation is
considerably improved when 20 smallest eigenmodes are
included where the deviation is reduced to 1%. Our result
with the overlap is appreciably better than the domain-
wall fermion case when the size of the fifth dimension is
limited to Ls � 10 to 48 [18] with 83 3 32 lattice and the
same b at 5.7. In the latter case, the ratio deviates from
unity by �55% for Ls � 10 and �15% for Ls � 48 at the
quark mass mfa � 0.02. Comparing the calculated pion
mass [19] and neglecting the volume difference, this quark
mass corresponds to m0a � 0.07 in our study where the
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FIG. 1. Ratio of the right to left side of Eq. (2) for a configu-
ration with topology. The symbols � (�) indicate the case with
projection of 10 (20) smallest eigenmodes.

deviation is less than 1023. Even at a quark mass 12 times
smaller, i.e., m0a � 0.006, the deviation is only at the 1%
level in the overlap case.

The average of u and d quark masses in the modified
minimal subtraction (MS) scheme at the renormalization
scale m is obtained from the axial Ward identity ZA≠mAm �
2Z21

S m0ZPP via the ratio of the matrix elements

mMS
q �m� � Z21

S �m�m0

� lim
t!`

ZA�m�
ZP�m�

P
�x	0j=tA4�x�jp�0�


2
P

�x	0jP�x�jp�0�

, (3)

where Am � c̄igmg5�t�2�c and P � c̄ig5�t�2�c . We
first note that since ZS � ZP for the overlap fermion, they
drop out from the equation between the second and third
terms in Eq. (3). As a result, ZA can be determined by
the axial Ward identity nonperturbatively. With our Monte
Carlo data, we find ZA � 1.05�5�, 1.12(5), and 1.25(1) for
b � 5.7, 5.85, and 6.0 which is approaching the tree-level
value of r � 1.368 [15,20] with weaker coupling. These
are somewhat smaller than the resummed cactus diagram
of one-loop calculation [21] of ZA which are 1.67, 1.66,
and 1.65, respectively [22] when the tree-level factor of
r � 1.368 is included. To determine the renormalized
quark mass mMS

q a with Eq. (3), we assume that the ratio
ZA�ZP is better determined in perturbation than ZA and ZP
individually. Using the ratio ZA�ZP from the perturbative
calculation at m � 1�a [21,22],mMS

q a is defined in Eq. (3)
and plotted in Fig. 2 against the bare massm0a for the three
lattices.

We first observe that the renormalized quark mass does
not have an additive part due to the lattice chiral symmetry.

FIG. 2. Renormalized quark mass vs the bare quark mass on
the three lattices.
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The linear fit including the smallest 5, 7, and 8 quark
masses for b � 5.7, 5.85, and 6.0, respectively, shows that
the intercepts are of the order of 1023 and are consistent
with zero. This is a distinct advantage over the Wilson
fermion whose quark mass is subject to additive renormal-
ization which depends on the gauge configuration. From
the slope we can determine the nonperturbative Z21

S which
are 0.95(5), 0.89(5), and 0.80(1) for b � 5.7, 5.85, and
6.0. The renormalization group invariant quark mass is
defined as the integration constant of the evolution equa-
tion such that

mRGI
q � DZS�m�mMS

q �m� � DZS�m�Z21
S �m�m0 , (4)

where DZS�m� is the evolution factor which nullifies the
scale dependence ofmq�m� in a specific scheme. Using the
four-loop calculation of DZS�m� in the MS scheme [23],
we obtain the product of DZS�m�Z21

S �m� which should be
scale invariant. The results from the 3 lattices give 1.12(1),
1.17(6), and 1.14(5) for b � 5.7, 5.85, and 6.0. They
are indeed independent of scale within errors. From the
pion mass fit to be discussed later, we determine m0 �
6.8�5� MeV from the physical pion mass on the b � 6.0
lattice. This gives mRGI

q � 7.6�6� MeV for the average

of u and d quark masses, which in turn gives mMS
q �m �

2 GeV� � 5.5�5� MeV. The lattice scale is set by the Som-
mer scale r0 as derived from the static quark potential
[24]. We should point out that this quark mass should not
be taken literally, since the volume is quite small. The
primary purpose of the present study is to verify that the
quark mass extracted from the overlap fermion action does
not have additive renormalization and that mRGI

q is indeed
scale invariant.

Next we look at hadron masses. The results for the p, r,
and nucleon masses on the 103 3 20 lattice at b � 6.0 are
given in Fig. 3. They are obtained by a single exponential
fit with covariance matrix.

FIG. 3. Masses of p, r, and N on the 103 3 20 lattice at
b � 6.0 vs m0. The Sommer scale r0 is used for conversion to
physical units.
We see clearly that the nucleon mass suffers from the
finite volume effect when m0 is smaller than 0.4 GeV. Al-
though the r and p masses appear not affected as much,
there is the worry that the finite volume effect is present
when one considers the pion mass behavior as a function
of the quark mass m0. Here we shall concentrate on the
region L . 1�mp where the chiral perturbation analysis
is expected to apply. Plotted in Fig. 4 are the pseudoscalar
meson mass squared (m2

Pa2) as a function of m0a for the
three lattices for those pseudoscalar mesons whose Comp-
ton wavelengths are less than the respective lattice size.

We fit them with a form suggested by the quenched
chiral perturbation theory [25]

m2
Pa

2 � 2Am0a
2�1 2 d ln�2Am0�L2

x �� 1 4Bm2
0 . (5)

We find that for Lx in between 0.6 and 1.4 GeV, the chiral-
log d for the b � 6.0 case is in the range of 0.20(3) to
0.37(14), which is slightly larger than that obtained in the
Wilson fermion [26]. The fit is stable with reasonably
small x2 (x2�d.o.f. � 0.35) and is fairly insensitive to
the range of the fitted quark masses shown in Fig. 4. The
solid curves represent those fitted with Eq. (5) for Lx �
1.0 GeV. On the other hand, the fit for b � 5.85 and 5.7
lattices shows that d is consistent with zero [the typical
value ranges from 0.03(26) to 20.29�21�] and the result is
more sensitive to the range of quark masses that are fitted,
although x2�d.o.f. is �0.1. At this stage, we cannot draw a
definite conclusion from these inconsistent results, except
to point out that perhaps this is due to the finite volume
effect. After all, the physical volumes of the lattices we
use are quite small (L � 1 fm). Another possibility is

FIG. 4. Pion mass squared as a function of the bare quark
mass on the three lattices. The lines are fits to Eq. (5) with
Lx � 1.0 GeV.
5053



VOLUME 85, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 DECEMBER 2000
FIG. 5. Pion and rho masses in units of
p

s on the three lat-
tices are plotted against sa2. They are given at three different
mp�mr ratios. The dotted lines are fits with a constant.

that the smaller quark mass cases may already fall into the
finite size scaling region where the pion mass may have a
different behavior than prescribed in Eq. (5). This is more
so for b at 5.7 and 5.85 than for b at 6.0 as evidenced
from the chiral behavior of the quark condensate 	c̄c
 [7]
and will be studied elsewhere.

Finally, we examine the scaling of r and p masses.
Since m2

pa
2 and mra are fairly linear in m0a, we fit them

with mra � A 1 Bm0a and m2
pa

2 � Cm0a 1 Dm2
0a2

for simplicity. The fits are decent with x2�d.o.f. , 1 for
the three lattices and the full range of quark masses in
Fig. 4. From the fits of mra and m2

pa
2, we determine m0

for which the ratio of mp�mr � 0.4, 0.5, 0.6, and plot in
Fig. 5 the corresponding mr and mp in units of

p
s as a

function of sa2, where s is the string tension. The errors
on the vector and pseudoscalar masses are determined from
interpolating the data from the neighboring quark masses.
It is known that the overlap operator does not have O�a�
artifacts [6]. It appears from Fig. 5 that even the O�a2�
errors are small.

To conclude, we find that when the matrix sign func-
tion e�H� in the overlap fermion is well approximated, the
promised chiral symmetry at finite lattice spacing and the
scaling of the renormalization group invariant quark mass
and hadron masses are manifested in the present numeri-
cal calculation. One drawback of the overlap fermion is the
large numerical overhead in the present algorithm. But, the
stake of being able to implement chiral symmetry at finite
5054
lattice spacing is high. Furthermore, the unexpected fea-
ture of being able to push the critical slowing down to close
to the physical u and d quark masses has the advantage of
being able to study the correct chiral behavior. The nice
scaling result is encouraging for controlling the continuum
extrapolation and may afford the possibility of working at
relatively large lattice spacings. For the moment, the study
is limited to small volumes. As long as one can extend it
to large volumes, it appears that one will be at a stage of
putting all the systematic errors under control at least for
the quenched approximation.
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