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Casimir Force at Both Nonzero Temperature and Finite Conductivity
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We find the combined effect of nonzero temperature and finite conductivity onto the Casimir force
between real metals. Configurations of two parallel plates and a sphere (lens) above a plate are consid-
ered. Perturbation theory in two parameters (the relative temperature and the relative penetration depth
of zero-point oscillations into the metal) is developed. Perturbative results are compared with compu-
tations. Recent improper computations based on the Lifshitz formula for the temperature Casimir force
are discussed.
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The Casimir effect is interesting because it is caused by
the zero-point oscillations of quantized fields. An enor-
mous amount of theoretical and experimental development
has recently become available. Theoretical progress was
made in elaborating different approximate methods [1–3]
and in the problem of a dielectric sphere where, for in-
stance, the structure of the ultraviolet divergencies had
been clarified [4]. In [5] the additive method was applied
to a dilute dielectric ball, and in [6] progress was made in
obtaining analytical results. The Casimir force was demon-
strated between metallic surfaces of a sphere above a disk
using a torsion pendulum [7] and an atomic force micro-
scope [8,9].

The increased accuracy of Casimir force measurements
invites a further investigation of different theoretical cor-
rections. In [10] the Casimir force for the configuration of
a sphere above a plate was computed by taking into account
surface roughness and finite conductivity corrections.
That result is in excellent agreement with the measured
Casimir force. Except for contributions of surface rough-
ness and finite conductivity, corrections due to nonzero
temperature play a dominant role above some distance
between the test bodies. The general expression for the
temperature Casimir force between dielectric plates was
first obtained by Lifshitz [11] (see also [12]). The Lifshitz
result is generally used in the theoretical predictions. In
this paper we address modifications to the Lifshitz result
which are necessary to correctly take into account the com-
bined effect of the finite temperature and finite conduc-
tivity. The temperature Casimir force between perfectly
conducting plates was found in [13–15], including the
limiting cases of large and small plate separations (high
and low temperatures). These results were modified for the
configuration of a spherical lens above a disk in [7]. The
temperature corrections are found to be insignificant within
the separations of experiments [8,9] (from a � 0.1 mm
until a � 0.9 mm or 0.5 mm). As for experiment [7]
they constitute up to 174% of the net force at the largest
separation a � 6 mm [16].

Computations of the recent papers [17–19] were based
on the Lifshitz formula for the van der Waals and Casimir
force at nonzero temperature. Drude and plasma models
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were used to represent the dependence of dielectric per-
mittivity along the imaginary axis in the plane of complex
frequency. As discussed below, the ambiguity contained in
the zero frequency term of the Lifshitz formula may lead to
incorrect computational results, including the occurrence
of large temperature corrections at small separations and
wrong asymptotics at high temperatures.

Here we present a perturbative calculation of the com-
bined influence of nonzero temperature and finite conduc-
tivity on the Casimir force. The obtained results are the
generalization of [13–15] to the case of real metals. They
can be used for the interpretation of precision experiments
on Casimir force. No unexpected large temperature con-
tributions arise at small separations. The more correct rep-
resentation for the Lifshitz formula is discussed avoiding
the ambiguity at zero frequency and giving the possibility
to eliminate the defects of [17–19].

We start with the configuration of two plane parallel
plates with the dielectric permittivity ´ separated by an
empty gap of thickness a. At arbitrary temperature T the
attractive force per unit area acting between plates is given
by the Lifshitz formula [12]
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Here r1,2 are the reflection coefficients for the waves with
different polarization; the prime on the sum indicates that
the term with n � 0 is to be taken with the coefficient
1�2, xn � 2ajn�c � tn � 2pnT�Teff, where the effec-
tive temperature is defined by kBTeff � h̄c��2a� [20].
2000 The American Physical Society 503



VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
The sum in (1) can be calculated with the help of the
Abel-Plana formula [20]. The result is
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The first term in the right-hand side of (3) is the Casimir
force at zero temperature, the second one takes into ac-
count the temperature corrections. The zero temperature
contribution was calculated in [21] numerically by the use
of optical tabulated data for the complex refractive in-
dex (an alternative computation [22] contains some errors
which are indicated in [21]). Independently, in [23] it was
determined by perturbation theory up to the fourth order in
the small parameter d0�a (d0 being the effective penetra-
tion depth of electromagnetic zero point oscillations into
the metal). Thereby, the plasma model was used for the
dielectric permittivity
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where vp is the effective plasma frequency, and ṽp �
2avp�c, so that a � 1�ṽp � d0��2a�. The results of
[21] and [23] are in good agreement for space separations
a $ lp � 2pc�vp . It is well known that the plasma
model does not take into account the contribution of re-
laxation processes which are taken into consideration by
the Drude model (see below). However, the variation of
the Casimir force obtained by both models remains smaller
than 2% [21].

Let us calculate the second term of (3) in the application
range of plasma model and under the condition T ø Teff.
To do this we use the representation of (1)
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Introducing x0 , 1 one can write

w�i�
pp�x� �

Z x0

x
z2 dz Q21

i 1
Z `

x0

z2 dz Q21
i . (6)

Considering first the case i � 2, we notice that in the
plasma model (4) the second term from the right-hand side
of (6) does not depend on x. Expanding Q21

2 from the first
term of (6) into a series in powers of z and integrating one
arrives at the result
504
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where C � const.
The even powers of x evidently do not contribute to the

second term of (3). As a result there is only one tempera-
ture correction originating from Q2 which is caused by the
term x3�6 and which does not depend on ṽp . Substituting
(7) into the second term of (3) one obtains
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Here F
�0�
pp�a� � 2p2h̄c��240a4�. Note that we neglect the

corrections O��T�Teff�5�.
Consider now i � 1 in (6). In this case both the first

and the second terms in the right-hand side depend on x.
The second term, however, is an even function of x and
for that reason it does not contribute to (3). Let us expand
the quantity z2Q21

1 in powers of small parameters a and
z. Integrating the obtained series between the limits z � x
and z � x0 , 1 we arrive to
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where the quantity w̃
�1�
pp�x� contains terms which do not

contribute to (3) or lead to contributions of order �T�Teff�5

or higher. Substituting (9) into the second term of (3) we
get
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where z �3� � 1.202 is the Riemann zeta function.
Now, let us take together (8), (10) and the zero tempera-

ture contribution given by the first term of (3). In [23] the
last one was calculated up to the fourth order. Here we add
two more orders. The final result is
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where c2 � 24, and the other coefficients are
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For d0 � 0 (perfect conductor) Eq. (11) turns into the
well-known result [13–15]. It is significant that the first
correction of mixing finite conductivity and finite tempera-
ture is of order �T�Teff�3, and there are no temperature
corrections up to �T�Teff�4 in the higher conductivity cor-
rections from the second up to the sixth order.

Analogous calculations can be performed for the
configuration of a sphere (lens) of radius R above a plate
starting from the force
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This formula is obtained from (1) using the proximity force
theorem [24], Q1,2 are defined in (2). After straightforward
calculations, using [23] for the zero temperature contribu-
tion, the result is
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where F
�0�
pl �a� � 2p3h̄cR��360a3�, c̃i � 3ci��3 1 i�,

ci are defined in (12). For the perfect conductor d0 ! 0
the known asymptotic behavior [7] is reproduced.

Now we consider space separations a for which T �
Teff or even larger. In this case perturbation theory in
T�Teff does not work. Let us compute the values of tem-
perature force (13) numerically in dependence on a for
Al surfaces used in experiments [8,9] with vp � 1.92 3

1016 rad�s [25], T � 300 K, and R � 100 mm. The nu-
merical results are shown in Fig. 1 by the solid curve. In
the same figure the asymptotic behavior (14) is presented
by the dotted line. The dashed line shows the Casimir
force at zero temperature (but with account of finite con-
ductivity). Here, the force was computed by Eq. (13) in
which the sum has been changed into the integral [15].
It is seen that perturbation theory works well within the
range 0.1 mm # a # 3.5 mm (note that all six perturba-
tion orders are essential near the left verge of this inter-
val). Starting from a � 6 mm the solid line represents the
asymptotics at large separations (temperatures)
FIG. 1. The Casimir force as a function of the surface sepa-
ration in configuration of a sphere above a disk. The solid line
represents the computational results obtained by Eqs. (4) and
(13). The dotted line is calculated by the perturbative Eq. (14).
The dashed line is the zero temperature result.
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This result follows from the term of (13) with n � 0 (the
other terms being exponentially small in T�Teff). For d0 �
0 one obtains from (15) the known expression for perfect
conductors [7,13–15]. Finite conductivity corrections of
higher orders do not contribute at large separations.

In [17–19] the Drude model was used also at small fre-
quences for which the dielectric permittivity on the imag-
inary axis is

´�ij� � 1 1
v2

p

j�j 1 g�
. (16)

Here, g is the relaxation frequency. Substituting Eq. (16)
into Eqs. (1) and (2), one obtains the ambiguity in the
value of reflection coefficient r2 at zero frequency. Actu-
ally, at x0 � 0 it follows from (2) that r2

2 � 1 for z � 0,
and r2

2 � 0 for any z fi 0, i.e., r2 is discontinuous at the
point z � 0. Note that if plasma model (4) is used both
the coefficients r1,2 are continuous. A similar (continuous)
behavior of both r1,2 holds for the perfect metal if the pre-
scription by J. Schwinger, L. L. DeRaad, Jr., and K. A. Mil-
ton [15] is adopted (the limit ´ ! ` should be taken before
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setting j � 0). In [17–19] no account has been taken to
the discontinuity of r2 mentioned above. In [17,18] the
value of r2 � 0 was used at zero frequency (the term Q21

2
does not contribute the force in this case). It is easy to
check that this leads to the incorrect asymptotics at large
temperatures, i.e., to 2z �3�RkBT��8a2� instead of (15).
By contrast, the authors of [19] used the value r2

1,2 � 1
at zero frequency both at Drude and plasma models ac-
cording to the well-known values of reflection coefficients
for the real photons. As a consequence, there appears [19]
a large linear temperature correction to the Casimir force
at small separations which is absent for the perfect metal.
The nonphysical photons, however, also contribute to the
force. Their reflection coefficient may be not equal to unity
since k2 fi 0, k being photon 4-momentum.

It is common knowledge that the Drude model gives an
accurate account of the behavior of permittivity at small
frequences. The ambiguity in the zero frequency term of
Lifshitz formula which arises when one uses the Drude
model can be cleared away in the following way. Using
the Fourier transformation and Poisson formula, Casimir
force (1) can be represented as follows [15,26]:
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Here the n � 0 term gives the force at zero temperature
[which is equal to the first term in the right-hand side of
Eq. (3)]. Now the discontinuity of r2 and Q21

2 at x � 0
does not influence the value of w̃pp . That is why the
representation (17) of Lifshitz formula is well defined and
convenient for computations. It is not difficult to expand
Fpp�a� from (17) [and also Fpl�a�] in powers of d0�a and
to get the coefficients near the first order terms valid at
arbitrary temperature. At low temperatures they coincide
with (11) and (14), and at high temperatures—with (15).
No linear in temperature contributions found in [19] both
in plasma and Drude models appear.

In conclusion, it may be said that the combined effect of
nonzero temperature and finite conductivity on the Casimir
force was examined. The perturbation theory for the force
in two small parameters was first developed. Also the am-
biguities in the previous calculations were explained and
eliminated. The results are in agreement with the previous
knowledge for the real metals at zero temperature from one
side and for the perfect conductors at nonzero temperature
from the other. (Note that some of the above results related
to the plasma model only are contained in the independent
preprint [26].) The obtained results are the topical ones for
the interpretation of precision measurements of the Casimir
force.
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