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Proposal for Measurement of Harmonic Oscillator Berry Phase in Ion Traps
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We propose a scheme for measuring the Berry phase in the vibrational degree of freedom of a trapped
ion. Starting from the ion in a vibrational coherent state we show how to reverse the sign of the coherent
state amplitude by using a purely geometric phase. This can then be detected through the internal degrees
of freedom of the ion. Our method can be applied to preparation of entangled states of the ion and the
vibrational mode.

PACS numbers: 03.65.Bz, 32.80.Pj
When the Hamiltonian of a quantum system is varied
adiabatically in a cyclic fashion, the state of the system
acquires a geometrical phase in addition to the usual dy-
namical phase. This effect, discovered by Berry [1] (and
generalized in various ways [2]), has been widely tested for
two-state systems [3] and attracted interest from a variety
of fields [4,5]. However, the Berry phase has not been
experimentally measured for quantum harmonic oscilla-
tors, though some theoretical calculations exist [6–10].
The reason for this might be the fact that for the simplest
case, namely, for adiabatic displacement of an oscillator
state in phase space, the Berry phase is independent of the
state [6,11] and, thereby, undetectable. However, when
a squeezing Hamiltonian is switched on, and the squeez-
ing parameter is varied, there would be a detectable Berry
phase [6–8]. For an initial Fock state jn� which undergoes
squeezing, the Berry phase after a cycle is 2�n 1 1�2�
times the classical Hannay angle [6,7]. The squeezed states
of the electromagnetic field would have been a natural can-
didate to test this kind of phase, but they are not stable
enough for an adiabatic evolution. However, the vibra-
tional mode of a trapped ion has been fertile ground for the
preparation of long-lived nonclassical states of a harmonic
oscillator [12–16]. In this Letter, we derive a Berry phase
formula for a certain adiabatic evolution of a joint state of
the internal levels of a trapped ion and its vibrational mo-
tion. Despite being the phase gained by a joint state, its
value is fundamentally dependent on the harmonic oscilla-
tor nature of the vibrational mode. We propose a scheme
to detect this phase which is feasible with current technol-
ogy. It is worthwhile to mention that, based on the cal-
culations of Ref. [8] (which where tested in systems other
than quantum harmonic oscillators [17]), there has been an
earlier attempt to detect the nonadiabatic geometric phase
in ion traps by applying a set of four squeezes to the vibra-
tional state [18]. Here we propose a way of detecting the
harmonic oscillator version of Berry’s original adiabatic
geometric phase.

Consider the Hamiltonian

H � Ha 1 Hb , (1)
0031-9007�00�85(24)�5018(4)$15.00
where

Ha � gaeifje� �gja 1 H.c. , (2)

Hb � gbje� �gjay 1 H.c. (3)

In the above, je� and jg� are two states of a qubit, ay and a
are, respectively, the creation and the annihilation operator
of a harmonic oscillator, ga and gb are unequal positive
interaction strengths (say ga . gb), and f is an arbitrary
phase factor. The motivation for choosing this Hamiltonian
is the possibility of its physical implementation, and this
will be described later. If the phase f is slowly varied over
a complete loop (so that the adiabatic approximation holds
true), there will be a nontrivial Berry phase acquired by
an eigenstate of the Hamiltonian H. We now proceed to
calculate this. We transform the Hamiltonian as

H 0 � S�e�yHS�e� , (4)

where S�e�yaS�e� � a cosh�r� 2 ay sinh�r�eiu is a
squeezing transformation with squeezing parameter e �
reiu . If we chose the squeezing strength r � tanh21gb�
ga and the squeezing phase u � 2f, the transformed
Hamiltonian will be

H 0 � V�je� �gja 1 ayjg� �ej� , (5)

where V � ga cosh�r� 2 gb sinh�r�. H 0 is the well
known resonant Jaynes-Cummings Hamiltonian [19]. A
similar transformation to arrive at a Jaynes-Cummings
Hamiltonian has been used in Refs. [20,21]. The eigen-
states of H 0 are

jC6
n � �

1
p

2
�jg� jn 1 1� 6 je� jn�� . (6)

This implies that the eigenstates of our original
Hamiltonian H are

jC6
n �e�� �

S�e�
p

2
�jg� jn 1 1� 6 je� jn�� . (7)

The states S�e� jn� featured in the above expression are the
squeezed number states [22]. Now we can proceed to cal-
culate the Berry phase from the instantaneous eigenstates
jC6

n �e�� of H.
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The expression for the Berry phase for an adiabatic
cyclic evolution of a Hamiltonian H�R� in parameter space
R is given in terms of the instantaneous eigenstates jn, R�
of the Hamiltonian as

gn � i
Z

c
dR �n, Rj=Rjn, R� . (8)

Using Eq. (7) in the above equation we get

gn � i
Z

c
de �C6

n jS�e�y=eS�e� jC6
n �

�
i
2

Z
c

de �n 1 1jS�e�y=eS�e� jn 1 1�

1
i
2

Z
c

de �njS�e�y=eS�e� jn� . (9)

If the modulus r of the parameter e is kept constant
throughout the evolution, then using the expression for
�njS�e�y=eS�e� jn� from Ref. [6] we get

gn � 22p�n 1 1� sinh2r . (10)

Note that the Berry phase gn is the same for both the states
jC1

n �e�� and jC2
n �e��. However, the dynamical phase b6

n
is exactly the opposite for the eigenstates jC1

n �e�� and
jC2

n �e�� and is given by

b6
n � 2

Z
c

dt �C6
n jS�e�yHS�e� jC6

n �

� 7V
p

n 1 1 T , (11)

where T is the time period of the cyclic variation of e.
Thus one can make the dynamical phase completely vanish
after two cycles by changing the state jC1

n �e�� to jC2
n �e��

or vice versa after one cycle. Under such circumstances,
the only contribution to the phase of the system will be
geometrical.

Let us now describe how the Hamiltonian H of Eq. (1)
can be physically realized. Recently, ion traps have been
a very active field of both experimental [12–15] and theo-
retical [16,20,21,23] research. Consider a single L three-
level ion with two hyperfine ground states and an excited
state (such as 9Be1 [12]) in a harmonic trap of frequency
n. The two ground states, labeled as je� and jg�, are
separated in frequency by an amount v0 which is much
less than their separation from the excited state. The mo-
tion of the ion is modified by its interaction with two pairs
of traveling-wave laser beams whose frequencies are de-
tuned from the excited state. The first pair of lasers have
frequencies vL1 and vL2, which satisfy vL1 2 vL2 �
v0 1 n, and the second pair of lasers have frequencies
vL3 and vL4, which satisfy vL3 2 vL4 � v0 2 n. We
require that the pair of lasers L1 and L2 differ in frequency
from the pair L3 and L4 by an amount much larger than
v0. We also assume that L1 differs in phase from the rest
of the beams by an amount f (this phase will need to be
slowly varied). The Hamiltonian for this system in the ro-
tating frame with U � exp�2iv0szt� and after making
the optical rotating wave approximation is

H�1� � V12�ei�f2nt1h12�a1ay��s1 1 H.c.�
1 V34�ei�nt1h34�a1ay��s1 1 H.c.� , (12)

where ay and a are, respectively, the creation and the anni-
hilation operator for the vibrational modes, s2 � jg� �ej,
s1 � je� �gj, and sz � jg� �gj 2 je� �ej, Vij are Rabi
frequencies of je� ! jg� transition induced by the ith and
jth lasers, and the factor hij � dkija0 is the Lamb-Dicke
parameter (where a0 is the amplitude of the ground state of
the trap potential and dkij is the wave vector difference be-
tween the ith and the jth beams). Hamiltonians comprised
of any one of the terms V12�ei�f2nt1h12�a1ay��s1 1 H.c.�
or V34�ei�nt1h34�a1ay��s1 1 H.c.� have been used in the
context of nonclassical state preparation of the vibrational
mode [12] and in a recent experiment such terms were
switched on simultaneously [24]. These are generally im-
plemented with a single pair of traveling wave laser beams.
We require two pairs of laser beams to switch on both the
Hamiltonian terms simultaneously. Similar Hamiltonian
terms, when used simultaneously and in conjunction with
atomic decay, can be used to generate squeezed states of
motion of the ion [20,21]. Here, however, we do not
want atomic spontaneous emission, and thus choose the
je� and jg� to be hyperfine levels so that atomic decay
can be neglected. In the Lamb-Dicke limit (hij ø 1) the
field can be expanded to the first order in hij . Expand-
ing thus, and transforming into the rotating frame with
U � exp�2inayat�, we obtain

H�1� � UyHU � je� �gj �gaeifa 1 gbay� 1 H.c.

� Ha 1 Hb , (13)

where we have made another rotating wave approximation
by omitting all the rapidly oscillating terms. In the above,
ga � h12V12�2 and gb � h34V34�2. Thus we can obtain
the Hamiltonian H in an ion trap by the above methods in a
rotating frame. From an experimental perspective, instead
of slowly varying the phase of one of the beams relative to
the rest, one can alternatively keep the phase of all lasers
the same but set vL1 2 vL2 � v0 1 n 1 d where d ø
n. Then td which varies very slowly with time t will serve
as the varying phase f. There is also an alternative way
to implement the required Hamiltonian which decreases
the number of laser beams to two. In this case, each
laser drives a quadrupole transition such as the narrow
S1�2 ! D5�2 transition in 40Ca1 [25] and the lasers would
have to be oppositely detuned from the transition by n.

We now describe our proposal to measure a harmonic
oscillator Berry phase in a vibrational mode of a trapped
ion. It is assumed that the atom is cooled to the ground
state of motion and in the internal state jg�. First we
prepare a coherent state ja� of the vibrational mode. This
5019



VOLUME 85, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 DECEMBER 2000
can be done by shifting the center of the trap [13] or other
methods [14,20] (our scheme is independent of the method
used). Next we want to achieve the evolution

jg� ja� ! jg� j2a� (14)

by purely geometrically. To this end we switch on the
Hamiltonian H by switching on appropriate lasers and
viewing the dynamics from the rotating frame with U �
exp�2i�naya 1 v0sz�t� (we describe later what happens
in the laboratory frame). The initial state can be written as

ja� jg� �
e2jaj2�2
p

2

X
n

an
p

n!
�jC1

n � 1 jC2
n �� . (15)

Next, the relative phase f of the lasers is varied
very slowly and cyclically while the parameter r �
tanh21gb�ga is kept constant. If f is varied slowly
enough so that adiabaticity holds, the state evolves as

jC�f�� �
e2jaj2�2
p

2

X
n

an
p

n!
eign�f�

3 �eib1
n �f�jC1

n �e�� 1 eib2
n �f�jC2

n �e��� , (16)

where gn�f� and b6
n �f� are geometric and dynamical

phases, respectively, and e � re2if. After f has com-
pleted an entire cycle (i.e., f � 2p), we apply a state
dependent phase shift jg� ! 2jg� to the ionic state (by
applying a 2p pulse [15]) and this has to be done much
faster than the evolution time scale of the system. This con-
verts jC1

n �e�� ! jC2
n �e�� and vice versa. Now we vary

the phase difference f again from 2p to 4p. The result-
ing state at the end of this second cycle is

jC�4p�� �
e2 jaj2

2

p
2

X
n

anei�gn�4p�1b1
n �2p�1b2

n �2p��
p

n!

3 �jC1
n �e�� 1 jC2

n �e��� . (17)

As b1
n � 2b2

n , the dynamical phase completely cancels
(for a different method of canceling the dynamical phase
in a quantum evolution, see Ref. [26]). If we choose
sinh2r � 1�4, we have gn�4p� � 2np . Under such cir-
cumstances, the final state would be

jC�4p�� �
e2jaj2�2
p

2

X
n

�2an�
p

n!
�jC1

n �e�� 1 jC2
n �e���

� jg� j2a� . (18)

So the detection of the Berry phase now amounts to distin-
guishing between the coherent states ja� and j2a�. To this
end, after switching off the adiabatic evolution, the entire
state is given a negative displacement of 2a. This reduces
our problem to distinguishing between j0� (a vibrational
state with no excitation) and j22a� [27]. To accomplish
this, the ionic internal states are allowed to interact with the
vibrational mode by a Jaynes-Cummings interaction [27].
In the case of no Berry phase, the probability of finding
the ion in an excited state at any time t is Pe0 � 0, while,
in the presence of a Berry phase the same probability is
given by
5020
Pe,22a � e22jaj2
X �22a�2n

n!
sin2 Vn11

2
t , (19)

where Vn11 is the Rabi frequency corresponding to an
excitation number n 1 1. Note that the above method is
not a perfect discrimination (it is impossible in principle
as j0� and j22a� are nonorthogonal). Incidentally, the
squeezing in our proposal (r � 0.48) is smaller than the
value r � 1.5 required for the four squeeze nonadiabatic
geometric phase proposal [18]. If the original coherent
state amplitude is jaj � 1, we can ensure that this squeez-
ing does not bring in a contribution from the higher order
terms in the expansion of Eq. (12) (From Ref. [22] one
can show that the probability of the state j3� in squeezing
of j1� with r � 0.48 is already small enough to make the
ratio of higher order terms to the first order term lower
than 1022h2.) One alternative to using a coherent state
is to start with the superposition j0� 1 j1� (which should
not be too difficult to prepare [28]) and convert it to the
state j0� 2 j1� by following an identical procedure to that
described above for coherent states.

In the laboratory (nonrotating) frame, there will
be an extra phase equal to

R
c de �C6

n jS�e�y�naya 1

v0sz�S�e� jC6
n �. For our choice of sinh2r � 1�4 this

phase turns out to be 3nT , where T is the time required
to complete one cycle of the phase f. We can choose T
in such a way that this phase becomes a multiple of 2p.
This will keep the magnitude of the phase unaltered from
that in the rotating frame.

Let us now examine the feasibility of our experiment
with existing ion trap parameters. For adiabaticity, we re-
quire the time scale T of variation of the relative phase
f to be greater than the dynamical time scale of the
problem. The dynamical time scale is given by g21

a�b �
�Vijhij�2�21. We first consider experiments with the
9Be1 ion [12,24], where h � 0.2 and V�2p � 500 kHz.
The dynamical time scale, required to be smaller than T ,
is then about 0.33 3 1025 s. T , on the other hand, is re-
quired to be lower than both the lifetime of the excited state
(which can be up to 10 s [21]) and the motional decoher-
ence time scale (which is about 1024 s [12] for 9Be1 ex-
periments) so that our assumption of neglecting all types of
decoherence holds. If we set T � 1025 s (much less than
both the decoherence time scales), then it is about thrice the
dynamical time scale and the assumption of adiabaticity
should hold (one could even try to ensure an order of mag-
nitude difference between the dynamical time scale and by
increasing the laser power a bit more than threefold). On
the other hand, motional decoherence, which is an order of
magnitude slower than T , can be neglected. In 40Ca1 ex-
periments [25], the dynamical time scale is 1025 s whereas
the motional decoherence time scale is 1023 s (internal
state decoherence being 1 s). For these traps, we can
choose T � 1024 s and perfectly satisfy both adiabatic-
ity and the neglect of decoherence. We also have to set
3nT � m2p for the extra phase in the nonrotating frame
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to vanish, where m is an integer. For standard traps, n �
10 MHz [20], and hence nT � 104. We can easily choose
a number of such a large order to be a multiple of 2p .

It is interesting to point out that if our scheme is per-
formed starting with the ion in the excited state, the evolu-
tion would be je� ja� ! 2je� j2a�. Therefore, the initial
internal state of the ion makes no difference to our scheme.
Using a similar scheme we can also create an interesting
entangled state of the ion and the vibrational mode. One
initially has to prepare the ion in a superposition of jg� and
some other state jr� which is completely decoupled from
the evolution due to our Hamiltonian. Then the evolution
proceeds as

�jg� 1 jr�� ja� ! jg� j2a� 1 jr� ja� . (20)

The state in the above equation is an entangled state of the
ion and the vibrational mode which has attracted a lot of
interest [15].

We have shown how to observe the Berry phase of a
simple harmonic oscillator using a trapped ion. We have
described how to reverse the amplitude of a coherent state
by purely geometric means (i.e., by using only the Berry
phase). An important advantage of the experiment is that
it needs only a single trapped ion. This is a simple require-
ment in comparison to the technology that already exists
such as the ability to entangle four ions in a trap [24].
Moreover, we have shown that the existing ion trap pa-
rameters are well in the range of those required for imple-
menting our proposal and for our analysis to remain valid.
We have also indicated how to use our scheme to create an
entangled state of the ion and the vibrational mode. Fur-
ther interesting extensions to the geometric approach to
multiple modes are also possible and will be investigated
in the future.
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