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We use tools of the equilibrium statistical mechanics of disordered systems to study analytically the sta-
tistical properties of an ecosystem composed of N species interacting via random mutual interactions, as
well as via deterministic self-interactions of order p $ 2. We show that the main effect of increasing the
order of the interactions among the species is to make the system less competitive, in the sense that the
fraction of extinct species is greatly reduced. In addition, we find that for p . 2 there is a threshold value
which gives a lower bound to the concentration of the surviving species, preventing then the existence
of rare species and, consequently, increasing the robustness of the ecosystem to external perturbations.

PACS numbers: 87.10.+e, 87.23.Cc, 87.23.Kg
Conservationists’ arguments in favor of biodiversity
have often appealed to the existence of intricate ties among
apparently unrelated species in which, for instance, the
strengths of the interactions between any pair of species
would depend on the concentrations or frequencies of a va-
riety of different ones [1]. Although the roles played by the
total number of species, as well as by the strengths of their
pairwise interactions, in the stability of an ecosystem are
now fairly well understood both theoretically and experi-
mentally [2–4], it is still not clear whether high-order
interactions among the species would actually bring any
advantage, in the sense of a larger robustness, to the eco-
system. This is the main issue we address in this Letter.
Albeit the model proposed here is somewhat unrealistic
from the biological viewpoint, since its dynamics is gov-
erned by a Lyapunov function, it clearly points out the ad-
vantages of high-order interactions, making clear-cut,
nontrivial predictions, such as the reduction of the number
of extinct species and the existence of a concentration
threshold which excludes rare species from the ecosystem
at equilibrium.

Traditionally, the study of coevolution of species has
been restricted to deterministic interactions [5]; however,
the ever-present uncertainties about how the species are
actually interacting combined to the overwhelming com-
plexity of those interactions [4] motivate an alternative, and
perhaps complementary, approach in which the strengths
of the interactions between the species are assigned at ran-
dom. In this Letter we solve analytically a model of co-
evolution of N species interacting via random, high-order
interactions. Our model is a generalization of the random
replicant model [6–8] which considers only pair interac-
tions between the species.

We consider an infinite population (ecosystem) com-
posed of individuals belonging to N different species
whose fitness Fi (i � 1, . . . , N) are the derivatives
Fi � ≠F �≠xi of the fitness functional F defined as
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where xi is the concentration of species i. These variables
satisfy the constraints
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and xi $ 0 ; i. Here the coupling strengths are statisti-
cally independent random variables with a Gaussian dis-
tribution
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for i1 , i2 , · · · , ip . The self-interaction parameter
u $ 0 acts as an external cooperation pressure limiting the
growth of any single species, and it is crucial to guarantee
the existence of a nontrivial thermodynamic limit, N ! `.
The interesting features of the model stem from the compe-
tition between the deterministic diagonal and the random
off-diagonal terms in Hp�x�: on the one hand, the random
mutual interactions favor the existence of only a few spe-
cies coupled via large negative coupling strengths Ji1i2···ip ,
while, on the other hand, the positive self-interaction terms
favor the coexistence of all species at the lowest possible
concentrations. It is convenient to think of u as a measure
of the relative strength between the self- and the mutual
interactions, so that the limit u ! `, for which the equi-
librium solution is xi � 1 ; i, corresponds to the situation
where there is no mutual interaction. Hence decreasing the
value of u allows us to investigate how the gradual intro-
duction of mutual interactions destabilizes that regime of
perfect coexistence among the species.

It can be shown that the dynamics
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minimizes Hp�x� while the total concentration
P

i xi is
a constant of motion (see, e.g., Ref. [5], p. 240). This
type of first-order differential equation, termed replicator
equation, has been used to describe the evolution of self-
reproducing entities (replicators) in a variety of fields, such
as game theory, prebiotic evolution, and sociobiology, to
name only a few [9]. In particular, a fourth-order inter-
actions replicator equation was shown to govern the game
© 2000 The American Physical Society
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dynamics in Mendelian (sexual) populations [10]. For the
sake of simplicity, in writing the fitness functional, Eq. (1),
we have implicitly assumed that the couplings Ji1i2···ip are
invariant under permutations of the indices i1, . . . , ip . We
must stress, however, that regardless of whether the cou-
plings are invariant or not, the interaction term in the
replicator equation, namely, ≠Hp�≠xi , will be invariant
to permutations of the species indices, and so the dynam-
ics will converge to a fixed point. In this sense, the mere
existence of a fitness functional (Lyapunov function) is a
severe assumption from the biological viewpoint. On the
other hand, it allows full use of the tools of the equilibrium
statistical mechanics to study analytically the properties of
the fixed points of the corresponding replicator equation.

In the sequel we present the results of the replica analy-
sis of the statistical properties of the ground state of the
multispecies interaction Hamitonian (1). Following the
standard prescription of performing quenched averages on
extensive quantities only [11], we define the average free-
energy density f as

2bf � lim
N!`
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�lnZ� , (5)
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is the partition function and b � 1�T is the inverse tem-
perature. Taking the limit T ! 0 in Eq. (6) ensures that
only the states that minimize Hp�x� will contribute to Z.
Here �· · ·� stands for the average over the coupling
strengths. As usual, the evaluation of the quenched aver-
age in Eq. (5) can be carried out through the replica method
[11]. Within the replica-symmetric framework we find
that, in the thermodynamic limit, the average ground-state
energy per species is given by
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and xs�z� is the positive solution of
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which maximizes the effective Hamiltonian
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We note that xs�z� � 0 for z . g. Here the saddle-point
parameters q, y, and D are given by the equations
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Although in general these equations can be solved numeri-
cally only, we can easily obtain an analytical solution for
large u:
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The physical order parameter q is defined by [11]

q �

ø
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, (17)

where �· · ·�T stands for a thermal average taken with the
Gibbs probability distribution
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Hence, values of q on the order of 1 indicate the coex-
istence of a macroscopic number of species, while large
values of q signalize the dominance of a few species (i.e.,
the number of surviving species is on the order of Na with
a , 1) only. In Fig. 1 we present the physical order pa-
rameter q as a function of the cooperation pressure u for
several values of p. As expected, for large u the ecosystem
is cooperative, in the sense that almost all species survive,
and so q � 1. For small u the system enters a strongly
competitive regime characterized by the divergence of q,
though the onset of this regime can be postponed by in-
creasing the order of the interactions p, as illustrated in
Fig. 1. Interestingly, the analysis of the effective Hamilto-
nian (10) for u � 0 shows that xs and consequently q [see
Eq. (12)] are finite only for p , 1, which corresponds to a
random version of Szathmáry’s model of parabolic growth
[12,13]. As the divergence of q signals the survival of only
a few species, the finitude of q at u � 0 is consistent with
a parabolic growth for which the coexistence of all species
is assured.

To understand better the distribution of species in the
ground state we calculate the distribution of probability
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FIG. 1. Physical order parameter q as a function of the coop-
eration pressure u for p � 2, 3, 5, and 10.

that a certain species concentration, say xk , assumes the
value x, defined by

Pk�x� � lim
b!`

øZ `

0

Y
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dxj d�xk 2 x�W �x�
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with W �x� given by Eq. (18). Since all species concen-
trations are equivalent we can write Pk�x� � P �x� ; k.
Moreover, to handle a possible singularity in the limit
b ! ` it is more convenient to consider instead the cu-
mulative distribution function C �x� �

Rx
0 dx0 P �x0�. Car-

rying out the calculations we obtain

C �x� �
Z `

g
Dz 1

Z g

2`
Dz Q�x 2 xs�z�� , (20)

where Q�x� � 1 for x . 0 and 0 otherwise. For u ! `

we find C �x� � Q�x 2 1� regardless of the value of p
since in this case the equilibrium solution is xi � 1 ; i.
An interesting feature of the cumulative distribution func-
tion is that C �0� is nonzero, indicating thus that the proba-
bility distribution P �x� has a delta peak at x � 0. In fact,
the first term of the right-hand side of Eq. (20), i.e., C �0�,
yields the fraction of extinct species in the ground state. In
addition, as shown in Fig. 2, the constancy of C �x� up to
a threshold concentration value xt � xs�g� indicates that
there is a lower bound to the concentration of any surviv-
ing species. As illustrated in Fig. 3, xt decreases mono-
tonically with the cooperation pressure u; its dependence
on the order p of the interactions, however, is more com-
plicated: while xt decreases with increasing p for small u,
it increases with p for large u. Glancing at Fig. 2 one can
readily realize that the nature of the concentration thresh-
old xt is totally distinct from that of the threshold obtained
in the limit u ! `, which equals 1 for all p. As expected,
xt ! ` for u � 0 since C �x� � 1 for all x in this limit,
while
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FIG. 2. Cumulative distribution function of the ground-state
species concentrations for p � 3 and several values of u as
indicated in the figure. The dashed line is the result for u ! `.

xt � �2pu2�21��p22� p . 2 (21)

for u large. Hence the concentration threshold disappears
in the case that the self-interaction term becomes too domi-
nant. A nonzero value of xt is then an emergent property
of ecosystems with high-order interactions (p . 2), which
results from the nontrivial interplay between the self- and
the mutual interactions. We note that xt � 0 for any finite
value of u in the case of pairwise interactions (p � 2). Of
course, the existence of such a threshold has far-reaching
consequences on the stability and robustness of the popu-
lation against external perturbations since it implies the
absence of rare, and hence proner to extinction, species
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FIG. 3. Concentration threshold xt as a function of u for p �
3, 4, 5, 7, 9, and 13. Note that xt � 0 for p � 2.
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FIG. 4. Fraction of extinct species in the ground-state C�0� as
a function of u for several values of p as indicated in the figure.
Note that C�0� � 1 for u � 0 indicating that only a few species
survive in the thermodynamic limit.

whose loss might cause drastic effects in the whole popu-
lation [2]. Furthermore, for fixed u the fraction of ex-
tinct species decreases exponentially with increasing p
(see Fig. 4). Explicitly, for large u we find

C �0� �
1

�4pp�1�2

1
u

exp�2pu2� , (22)

which shows that increasing the order of the interactions
among the species makes the ecosystem less competitive,
thus corroborating the conclusions drawn from the analysis
of Fig. 1.

We have verified the validity of the replica-symmetric
solution by performing the standard stability analysis [14].
In particular, that solution becomes unstable for u smaller
than 1�

p
2 � 0.707 and 0.106 for p � 2 and 3, respec-

tively, while for p $ 4 we find that it is unstable only at
u � 0. Hence our main results are not affected by the (lo-
cal) instability of the replica-symmetric solution.

Some remarks on the role of the high-order self-
interaction terms u

P
i x

p
i are in order. As signalized by

the divergence of the order parameter q for small values
of u (Fig. 1), the concentrations of a few species become
very large in this regime and so, in order to have a non-
trivial interplay between the two antagonistic terms in the
Hamiltonian (1), namely, the self- and the mutual interac-
tion terms, the former must also be of higher order p. In
fact, a similar study of the much simpler case, in which
the self-interaction terms are quadratic (i.e., u
P

i x2
i ) but

the mutual interactions are of higher order p . 2, cor-
roborates that assertion. For instance, we found that for
p � 3 the saddle-point equations have no solution (and
so q ! `) already for u , 2.028 and, in addition, the
range of this unphysical region increases linearly with
increasing p.

To conclude we must emphasize that our results describe
the equilibrium properties of the ecosystem only. Impor-
tant issues such as whether the absence of rare species at
equilibrium would imply that the ecosystem is stable with
respect to the invasion of rare mutant species, or whether
the effect of a perturbation decreasing the concentration
of a single species to a value below xt would lead to the
collapse of the entire ecosystem, can be addressed only
through a dynamical approach [8], which is beyond the
scope of our present work. We hope the nontrivial pre-
dictions of our model will provide motivation for the pro-
posal of more realistic models of high-order multispecies
interactions.
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