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Like-Charge Attraction and Hydrodynamic Interaction
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We demonstrate that the attractive interaction measured between like-charged colloidal spheres near a
wall can be accounted for by a nonequilibrium hydrodynamic effect. We present both analytical results
and Brownian dynamics simulations which quantitatively capture the one-wall experiments of Larsen
and Grier [Nature (London) 385, 230 (1997)], using a single unmeasured parameter.

PACS numbers: 82.70.Dd
Colloidal spheres provide a simple model system for
understanding the interactions of charged objects in a salt
solution. Hence, it came as a great surprise when it was
observed that two like-charged spheres can attract each
other when the spheres are confined by walls [1–4]. Since
both the charge densities and sizes of the spheres in ques-
tion are in the range of large proteins, it would be expected
that a change in sign of this interaction would have impor-
tant implications for biological systems [5]. Theorems by
Sader and Chan [6], Neu [7], and Trizac and Raimbault
[8] demonstrate that under very general conditions the
Poisson-Boltzmann equation for the potential between
like-charged spheres in a salt solution will not admit
attractive interactions. Explanations for the observed at-
traction have thus exclusively focused on deviations from
the classical Derjaguin, Landau, Verwey, and Overbeek
(DLVO) theory.

Herein we propose that an apparently attractive interac-
tion of two like-charged colloidal spheres measured in the
presence of a single charged wall can arise from a nonequi-
librium hydrodynamic effect. In a bulk solution, far from
solid boundaries, an external force acting on two identi-
cal spheres cannot change their relative positions. This
is a consequence of the kinematic reversibility of Stokes
flow and of the symmetries inherent in the problem. How-
ever, these symmetries are broken in confined geometries,
where the hydrodynamic effect of boundaries is impor-
tant. In this situation, relative motion between the spheres
could stem either from an interparticle force or from a hy-
drodynamic coupling caused by external forces acting on
each of the spheres individually. In a typical experiment
with charged polystyrene spheres, the charge density on
the walls of the cell is of order the charge density on the
spheres [9]. We demonstrate that the hydrodynamic cou-
pling between two spheres caused by their repulsion from a
wall leads to motion which, if interpreted as an equilibrium
property, would appear to give an effective pair potential
which has an attractive well. With a single unknown pa-
rameter (the charge density on the glass), our calculations
quantitatively reproduce both the size and the shape of the
experimental measurements for two spheres near a single
charged wall.
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The response of a particle to an external force is sig-
nificantly changed near a wall because the flow field must
vanish identically on the wall. For point forces, Lorenz de-
termined this wall-corrected flow field [10], which Blake
later expressed using the method of image forces [11],
analogous to image charges used in electrostatics. Images
of the appropriate strength on the opposite side of the wall
exactly cancel out the fluid flow on the wall. When two
spheres are pushed away from a wall, the flow field from
one sphere’s image tends to pull the other sphere towards
it, and vice versa (Fig. 1). This decreases the projected
distance between the spheres. All experiments which have
directly measured an attractive pair interaction between
like-charged colloids have based their conclusions on the
spheres’ relative motion projected onto the plane parallel
to the wall.

The attractive interaction between two charged spheres
in the presence of a single charged wall can now be un-
derstood with a simple picture. When the spheres are
sufficiently close to the wall, they are electrostatically re-
pelled from it. The net force on each sphere thus includes
both their mutual electrostatic repulsion and their repul-
sion from the wall. How the spheres respond depends on
their hydrodynamic mobility: when the spheres are close
together (Fig. 2a), their mutual repulsion overwhelms any
hydrodynamic coupling, and the spheres will separate as
expected for like-charged bodies. However, when they
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FIG. 1. Two spheres forced away from a wall are drawn to-
gether by hydrodynamic coupling, because the flow due to one
sphere’s image force pulls the other sphere towards it.
© 2000 The American Physical Society
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FIG. 2. (a) If the screening clouds of the two spheres overlap
sufficiently, the mutual repulsion is stronger than the hydro-
dynamic coupling. (b) When the spheres are farther apart, the
hydrodynamic coupling dominates.

are beyond some critical separation (Fig. 2b), the hydro-
dynamic coupling due to the wall force overcomes the elec-
trostatic repulsion, so that the relative distance between the
spheres decreases as they move away from the wall.

We are now in a position to make quantitative pre-
dictions for the role of hydrodynamic coupling in direct
measurements of two-particle interaction. Two spheres of
radius a initially located a distance r apart and a distance
h from the wall move because of both interparticle forces
and the repulsive force from the wall. The response of
the two spheres to these forces is expressed by the hydro-
dynamic mobility tensor b�X1, X2�, defined by

v � b�X1, X2� ? F , (1)

where v � � �X1, �X2� are the sphere velocities and F �
�F1, F2� are the forces on the spheres. The two 3 by 3
blocks along the diagonal represent a sphere’s response to a
force applied directly to it, and are given by the (isotropic)
Stokes mobility �6pma�21, with (nonisotropic) wall cor-
rections, where m is the fluid viscosity. The off-diagonal
blocks represent one sphere’s motion due to a force on the
other. Since small spheres in an external flow are simply
advected with the flow, this coupling mobility is given by
the fluid velocity at one sphere’s position due to a force on
the other. An explicit representation of the mobility tensor
for these spheres using Blake’s solution [11] for the flow
due to a point force near a wall is given elsewhere [12].

For analytic tractability and intuitive clarity, we first
consider an idealized non-Brownian experiment. Two
spheres are initially held a distance r apart and a distance
h from the wall, released for a small time Dt, and
their projected relative displacement Dr � Dx2 2 Dx1
recorded. If this relative displacement were interpreted
to result exclusively from an effective interparticle force
Feff � 2≠rUeff, then one would infer Feff to be given by

Dr � �2�bX2X2 2 bX2X1� jFeffj�Dt , (2)

where bX2X1 denotes the mobility of sphere 2 in the x di-
rection due to a force in the x direction on sphere 1, and
so on. We denote the x direction to lie along the line con-
necting the spheres, and the z direction to be perpendicular
to the wall.

However, the spheres’ relative motion arises because of
both interparticle forces and the repulsive force from the
wall. Utilizing symmetries of the mobility tensor, it is
straightforward to show that Dr will be

Dr � �2�bX2X2 2 bX2X1 � jFpj 1 2bX2Z1Fw�Dt , (3)

where Fp and Fw are, respectively, the repulsive electro-
static sphere-sphere and sphere-wall forces.

Therefore, if one were to assume the measured displace-
ment (3) to arise exclusively from Feff as in (2), one would
determine an effective pair potential given by

Ueff�r , h� � Up�r� 2
Z r

`

bX2Z1�r , h�Fw�h�
bX2X2�h� 2 bX2X1�r , h�

dr ,

(4)

where Up�r� is the true interparticle thermodynamic pair
potential, r is the separation between spheres, and h is their
distance from the wall. Since bX2X1�r , h� ø bX1X1�h�, we
neglect bX2X1 and arrive at an explicit form for the inferred
effective potential

Ueff�r , h� � Up�r� 2
Fw

1 2
9a
16h

3h3a
�4h2 1 r2�3�2 . (5)

We use the DLVO potential [13] for the electrostatic
interaction of two spheres in the form presented by Larsen
and Grier [4],

UDLVO

kBT
� Z2lB

µ
eka

1 1 ka

∂2 e2kr

r
, (6)

where a and Z are, respectively, the radius and effec-
tive charge of each sphere, the Bjerrum length lB �
e2�´kBT , and the Debye-Hückel screening length k21 �
�4pnlB�21�2, with a concentration n of simple ions in
the solution. This formula is obtained using effective
point charges in a linear superposition approximation.
To determine the repulsive electrostatic force between
each sphere and the wall, we used the same effective
point-charge approach to obtain

Uw

kBT
� 4pZsglB

eka

k�1 1 ka�
e2kh, (7)

where sg is the effective charge density on the glass wall.
We note that while the functional form of this equation is
correct, it is not clear that the effective charges in Eqs. (6)
and (7) will be exactly the same, as geometric factors
buried in each effective charge will vary from situation
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to situation. A more reliable description of sphere-sphere
and wall-sphere interactions will be necessary for quan-
titative comparisons with independently measured charge
densities.

Using all of Larsen and Grier’s experimental parameters
as inputs to the theory, we plot (5) to obtain the effective
potential Ueff. The only necessary parameter not measured
is the surface charge density of the glass walls sg, which
we take to be sg � 0.4sp, well within the range of mea-
sured estimates [9]. Figure 3 shows this effective poten-
tial for various sphere-wall separations. The hydrodynamic
coupling of collective motion away from the wall with rela-
tive motion in the plane of the wall leads to what appears
to be an attractive component. It is important to emphasize
that this hydrodynamic coupling is a kinematic effect, and
has no thermodynamic significance—if one were to nail
down the spheres and measure the forces acting on them,
all forces would be repulsive.

As a complement to this analytic approach and in or-
der to make quantitative comparisons with Larsen and
Grier’s experiment, we simulate the dynamics of this sys-
tem using (6) and (7) for the (repulsive) sphere-sphere and
wall-sphere forces, respectively. We account for Brownian
motion of the spheres in the standard Stokes-Einstein fash-
ion, whereby the diffusion tensor is proportional to the mo-
bility tensor, D � kBTb [14–16]. Using all experimental
parameters and sg � 0.4sp as explained above, we per-
formed a computer version of Larsen and Grier’s experi-
ment, and analyzed the resulting data using their methods
[17]. Our results suggest that this approach includes all of
the essential ingredients necessary for quantitatively un-
derstanding their observations.

In Fig. 4, we present simulations for the two cases pre-
sented by Larsen and Grier: the first with the spheres
2.5 mm from the wall, so that they interact significantly
with the charge double layer of the wall, and the second
starting 9.5 mm from the wall, well outside of the wall’s
charge double layer. The simulated results show a shal-
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FIG. 3. Plot of the analytic effective potential (4) for three dif-
ferent wall separation distances. The simulated effective poten-
tials (Fig. 4) are slightly shallower because the pair of spheres
drifts off the wall into areas with a shallower well during the
1�60 s measurement intervals.
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lower dip than the analytic ones because the spheres are
released and their positions recorded at 1�60 s intervals in
the experiments, so that as they are forced away from the
wall, the force from the wall decreases and the wall-driven
hydrodynamic coupling becomes weaker. By contrast, the
analytic treatment considers instantaneous measurements.

Our theoretical picture agrees quantitatively with mea-
sured data. Moreover, there are many consequences of the
theory that can be tested experimentally: (1) Effective
kinetic potentials can be predicted for different sets of
conditions and quantitatively compared with experiments.
(2) The hydrodynamic mechanism requires a net drift of
the spheres away from the wall, which could be indepen-
dently measured. In fact, a reexamination of the original
data in the one-wall experiment under discussion has
revealed an out-of-plane motion of the order of magnitude
we predict, although a precise measurement has thus far
proved elusive [18]. (3) Finally, the theory provides a
simple explanation for the observation that the attraction
disappears when the salt concentration is increased. While
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FIG. 4. Comparison between Brownian dynamics simulations
and experiments [4] for the effective potential between two col-
loidal charged spheres near a wall. Two situations are presented:
spheres close to the wall (h � 2.5 mm) and far from the wall
(h � 9.5 mm). These are offset by 1kBT for clarity. The simu-
lations were carried out using standard methods [15,16], taking
all parameters for the DLVO potential as those measured in the
experiments [4]. The simulations were analyzed using the same
techniques used in the experiments [17]. The only parameter
that is not precisely measured is the charge density on the wall,
which we take to be sg � 0.4sp.
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this at first seems counterintuitive— the spheres are mutu-
ally attractive only when they are mutually repulsive—the
significance of the wall-driven hydrodynamic coupling
makes this clear.

Given that colloidal spheres immersed in a viscous fluid
must obey the laws of hydrodynamics, there are only
three ways to interpret the present results: (1) hydrody-
namic coupling accounts for the entire dip in the mea-
sured one-wall pair potential, and therefore no attractive
pair potential exists in this geometry; (2) hydrodynamic
coupling accounts for some, but not all, of the apparent
attraction; or (3) any putative attraction in the pair poten-
tial must be smaller than the noise in the present measure-
ments. The second possibility, however, would require the
putative attraction to have exactly the same shape as the
hydrodynamic coupling—which seems unlikely, although
not strictly ruled out.

Several pieces of experimental evidence have been col-
lected which seemed to suggest the existence of an at-
tractive minimum in the thermodynamic pair potential of
like-charged colloidal particles in confined geometries. At-
tractive pair potentials have been observed for two spheres
trapped between two walls [3], using methods similar to
the one-wall experiment under discussion, and also in ex-
periments using suspensions of spheres trapped between
two walls [1,2], in which pair potentials are obtained af-
ter accounting for many body effects. In addition, it has
been shown that metastable colloidal crystals take orders of
magnitude longer to melt than would be expected without a
thermodynamic attraction [19]. Similarly, voids in colloi-
dal crystals take much longer to close than expected [20].

The theory presented in this paper applies only when
there is a net force pushing spheres off of a wall. It there-
fore does not apply to the suspension measurements [1,2],
since the suspensions are in equilibrium and the spheres
fluctuate about the equilibrium position between the two
walls. It also would not apply to the direct measurements
of two spheres trapped between two walls [3] if it were cer-
tain that the two spheres were always placed exactly at the
equilibrium position. However, any uncertainty in the cen-
tering of the spheres relative to the equilibrium position
gives a force off of the nearer wall which leads to a hy-
drodynamic coupling mimicking an attractive interaction.
Furthermore, in these experiments, the spheres’ positions
are reset with laser tweezers in every measurement, so that
any uncertainty in the initial out-of-plane positions occurs
systematically in all measurements. Since the uncertain-
ties in wall separation and initial sphere positions are typi-
cally 6300 500 nm, which is somewhat more than the
spheres move in our one-wall simulations, it not unreason-
able to imagine that this directly measured attractive pair
interaction could also be hydrodynamic in origin. We have
not attempted a quantitative comparison with the experi-
ments due to the large number of unknown experimental
parameters.
The theory presented in this paper offers a nonequilib-
rium hydrodynamic explanation for the attractive potential
in the single-wall experiments without invoking a novel
thermodynamic attraction. Using exclusively repulsive
forces and taking careful account of the hydrodynamics,
we have found quantitative agreement with experimental
results when the effective wall charge density is chosen to
be sg � 0.4sp , well within the range of measured esti-
mates. Whether the attractive effects observed in experi-
ments are a consequence of many body effects or whether
an attractive pair potential exists can be determined only
by further experiments which allow a quantitative account
for the effects of hydrodynamic coupling.
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