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Local Distinguishability of Multipartite Orthogonal Quantum States
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We consider one copy of a quantum system prepared in one of two orthogonal pure states, entangled or
otherwise, and distributed between any number of parties. We demonstrate that it is possible to identify
which of these two states the system is in by means of local operations and classical communication
alone. The protocol we outline is both completely reliable and completely general; it will correctly
distinguish any two orthogonal states 100% of the time.

PACS numbers: 03.67.–a, 03.65.–w, 89.70.+c
Pure quantum states may only be perfectly distin-
guished from one another when they are orthogonal.
That is, a state jc� may be reliably distinguished from
another jf�, only if �c jf� � 0. We will show that
if �c jf� � 0 for given jc� and jf�, then jc� may
always be distinguished from jf� by means of local
operations and classical communication (LOCC). This
may be surprising, since quantum systems can encode
information that may only be extracted by analyzing the
system as a whole. This well-known phenomenon —
entanglement — forms the basis of many recently pro-
posed quantum schemes, such as cryptography [1–3],
computation [4], and enhanced communication [5]. A
tempting interpretation is that “entangled information”
can only be uncovered using global measurements upon
the system as a whole. But this is not the case; in our very
general situation local measurements, sequentially depen-
dent upon classically communicated prior measurement
results, suffice to identify orthogonal entangled quantum
states.

Schemes for distinguishing between a set of quantum
states, both pure and mixed, have been considered by vari-
ous authors [6–11]. Closely related to the present paper
is the work of Bennett et al. [9] who showed that there
exist sets of orthogonal product states that cannot be dis-
tinguished by LOCC.

Alice and Bob each hold part of a quantum system,
which occupies one of two possible orthogonal quantum
states jc� and jf�. Alice and Bob know the precise form
of jc� and jf�, but have no idea which of these possible
states they actually possess: They will have to perform
some measurements to find out. A global measurement
would suffice, but alas Alice and Bob cannot afford to meet
up. Fortunately for them, they are on speaking terms, as
one phone call is all they require. This situation, LOCC, is
of primary relevance to most applications of entanglement.

The strategy Alice and Bob adopt is simple. They can
always find a basis in which the two orthogonal states can
be represented:

jc� � j1�A0 jh1�B 1 · · · 1 jl�A0 jhl�B ,

jf� � j1�A0 jh�
1 �B 1 · · · 1 jl�A0 jh�

l �B ,
(1)
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where �ji�A0 for i � 1 to l� form some orthogonal basis set
for Alice, �jh1�B, . . . , jhl�B� are not normalized, and jh

�
i �B

is orthogonal to jhi�B. Alice simply measures her part of
the system in such a basis, and communicates the result,
i, to Bob. Bob then has an easy task: he may distinguish
locally between jhi�B and jh�

i �B and thereby know which
state he and Alice shared to begin with.

Alice and Bob do not initially know this ideal measure-
ment basis, but they do start out knowing the precise form
of two states that might correspond to their shared quan-
tum system. These two possible states, jc� and jf�, are
orthogonal, so that �c jf� � 0. We can represent them in
the following, entirely general way:

jc� � j1�Ajh1�B 1 · · · 1 jn�Ajhn�B ,

jf� � j1�Ajn1�B 1 · · · 1 jn�Ajnn�B ,
(2)

where �j1�A, . . . , jn�A� form an orthonormal basis
set for Alice, and the vectors �jh1�B, . . . , jhn�B� and
�jn1�B, . . . , jnn�B� are not normalized and also not neces-
sarily orthogonal. Alice and Bob can express the vectors
�jh1�B, . . . , jhn�B� and �jn1�B, . . . , jnn�B� as a superposi-
tion of a set of arbitrary basis vectors �j1�B, . . . , jm�B� in
Bob’s space,

jhi�B �
X
j

Fijj j�B, jni�B �
X
j

Gijj j�B , (3)

where the elements Fij and Gij form two n 3 m matrices
F and G. These matrices preserve all the information Alice
and Bob hold about states jc� and jf�. Because of the way
they are constructed, the matrix FGy takes the following
form:

FGy �

0
BB@

�n1 jh1� · · · �n1 jhn�
...

. . .
...

�nn jh1� · · · �nn jhn�

1
CCA . (4)

We can see this is the case by inspection, because
�ni jhj� �

Pn
k�1 FjkG�

ik . The matrix FGy encapsulates
a great deal of significant information for Alice and Bob
about the relationship between the states jc� and jf�.
Since we know by the conditions of the problem that
�f jc� � 0, we know that
© 2000 The American Physical Society
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�f jc� �
nX

i�1

�ni jhi� � Trace�FGy� � 0 . (5)

But the FGy matrix holds more information than the
simple fact of the states’ orthogonality. It also encodes the
key to distinguishing between these two possible states.
Alice plans to distinguish jc� and jf� by finding some
basis — any basis — in which she can describe her part
such that the states jc� and jf� take the more restricted
form of (1). Alice must choose her �j1�A, . . . , jn�A� basis
carefully such that no matter what result ji�A she obtains,
Bob can surely distinguish between his possible states.
This means that, for all i, jni� must be orthogonal to jhi�.
Thus we can write down our distinguishability criterion:

; i �ni jhi� � 0 . (6)

In other words, in our matrix representation, we require
the diagonal elements of FGy to be zero. Alice can alter
the form of FGy by changing the basis in which she de-
scribes and measures her system. She has a great deal of
choice in this regard: Any orthogonal basis set spanning
her space will provide a description of form (2), and thus
some matrix FGy of form (4). When she changes her or-
thonormal basis set, this changes the form of the matrices
F and G, and thus changes the form of FGy. In fact, uni-
tary transformations of Alice’s measurement basis map to
the conjugate unitary transformations upon FGy.

Theorem 1.—A unitary transformation UA upon Al-
ice’s measurement basis will transform the matrix FGy

to UA��FGy�UA�y.
Proof: From (2), jc� �

P
i ji�Ajhi�B. Alice’s unitary

transformation acts thus: ji�A �
P

j U
Ay
ij j j0�A. From (3) it

follows that, in Alice’s new basis �j10�A, . . . , jn0�A�,

jc� �
X
ijk

U
Ay
ij j j0�AFikjk�B . (7)

For true generality, we consider Bob might assist
Alice by unitarily rotating his basis by UB. We
therefore write jk�B �

P
l U

By
kl jl0�B, giving jc� �P

ijkl j j
0�Ajl0�BU

Ay
ij FikU

By
kl . Since U

Ay
ij � UA�

ji , we can
rewrite this as

c �
X
ijkl

j j0�Ajl
0�BUA�

ji FikU
By
kl . (8)

By analogy with (2) and (3), this means that in the new
basis of description we have a new matrix F0 where F0

ik �P
jl UA�

ji FikU
By
kl . Under unitary basis rotations by Alice

and Bob, our matrices F and G undergo the curious trans-
formations

F0 � UA�FUBy, G0 � UA�GUBy. (9)

This means that the object of our interest, the FGy matrix
encoding information about the relationship between the
states, will transform as
F0G0y � �UA�FUBy� �UA�GUBy�y

� UA�FUByUBGyUA�y (10)

� UA��FGy�UA�y � .

Bob’s unitary rotation UB drops out, as rotations in his
basis will not affect the overlaps �ni jhj� that make
up FGy.

If UA is unitary, then so is UA�. Alice can find a ba-
sis of form (1), and thereby satisfy our distinguishability
criterion (6), if and only if there exists a unitary matrix
U � UA� such that U�FGy�Uy is a “zero-diagonal” ma-
trix (a matrix whose diagonal elements are all zero). A
proof that such a unitary matrix always exists constitutes
a proof that two orthogonal quantum states can always be
distinguished.

Unitary transformations upon Alice’s measurement ba-
sis translate into (conjugated) unitary transformations upon
her specific FGy matrix. If she can find a unitary rotation
that converts this matrix into zero-diagonal form, she can
ensure that Bob will be able to distinguish between states
jc� and jf�.

We first prove such a rotation always exists in the two-
dimensional case, and then show how Alice may use a
finite sequence of such 2 3 2 transformations to zero di-
agonalize any traceless n 3 n matrix.

Theorem 2.— Let M be the wholly general 2 3 2 matrix
� x

z
y
t �. There exists a 2 3 2 unitary matrix U such that

the diagonal elements of UMUy are equal.
Proof: Let

U �

µ
cosu sinueiv

sinue2iv 2 cosu

∂
.

We need the diagonal elements of UMUy to be equal.
This gives us the condition

�x 2 t� cos2u 1 sin2u� ye2iv 1 zeiv� � 0 . (11)

The real and imaginary parts of this equation can be solved
for the angles v and u:

tanv �
Im�x 2 t�Re�z 1 y� 2 Re�x 2 t�Im�z 1 y�
Re�x 2 t�Re�z 2 y� 1 Im�x 2 t�Im�z 2 y�

,

(12)

tan2u �
Re�x 2 t�

Re�z 1 y� cosv 2 Im�z 2 y� sinv
. (13)

The right-hand side of (12) is always real, and thus there
will always be an angle v that satisfies the equation. Given
a definite v, we can always solve (13) for a definite u

for the same reason. Thus for any 2 3 2 matrix M, there
exists a 2 3 2 unitary matrix that “equidiagonalizes” it
(equalizes all its diagonal elements). This completes the
proof �.
4973



VOLUME 85, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 DECEMBER 2000
This mathematical result can be applied to the 2 3 2
dimensional case. Since the jc� and jf� states are ortho-
gonal, the corresponding FGy matrix is traceless, in which
case equidiagonalization constitutes zero diagonalization.
Equations (12) and (13) therefore always pick out a spe-
cific unitary transformation that will zero diagonalize FGy.
By measuring in that basis, Alice and Bob can always dis-
tinguish between the two possible orthogonal states of their
system.

We want to consider all situations of greater dimension-
ality than 2, but we first concentrate on situations where
Alice’s Hilbert space has 2k dimensions (where k is some
positive integer). The ABy matrix has the same dimen-
sionality and will have 2k 3 2k elements. Note that while
this particular class of FGy matrices — those of dimen-
sion 2k—may seem limited, it includes all quantum states
comprising sets of qubits. In such cases, Alice can adopt
a simple strategy to equidiagonalize this potentially huge
matrix in a relatively small number of steps. We know
from Theorem 2 above that Alice may unitarily rotate any
two diagonal elements in her FGy matrix so that they be-
come equal. By grouping the diagonal elements into 2k21

pairs, and equidiagonalizing each pair, she can create 2k21

equal pairs.
Both elements of an equal pair can then be individually

made equal to the elements of another equal pair, using
only two 2 3 2 unitary transformations. Thereby, Alice
can create 2k22 “quartets” of equal diagonal elements with
just 2k21 further 2 3 2 unitary transformations. By re-
peating this process k times, Alice will set all the diag-
onal elements exactly equal. If her FGy matrix has 2k

diagonal elements, then k2k21 elementary operations will
serve to equidiagonalize it. This satisfies Alice’s require-
ments: Since she knows that her physical FGy matrix is
traceless, she knows that all the diagonal elements �ni jhi�
will be thereby set to zero. Therefore Alice and Bob can
distinguish the two orthogonal states. Of course, Alice
need not physically enact each and every separate 2 3 2
unitary transformation. A single 2k 3 2k unitary transfor-
mation will represent the product of all these rotations, and
finding this one transformation that equidiagonalizes FGy

in one shot is a perfectly tractable problem for Alice to
solve.

The matrix FGy will not, in general, be of size 2k 3 2k .
Alice may nevertheless devise an approach that is guaran-
teed to yield state equations of form (1). She needs to be
inventive. Her favored tactic so far, a sequence of pairwise
equalizations, will converge upon the desired unitary ma-
trix only in the infinite limit. She can find a more elegant
method, however. The 2k dimensional case is unproblem-
atic, so if Alice can enlarge FGy such that it achieves a
dimensionality of a power of 2, she can solve her problem.

Such an enlargement represents an expansion of Alice’s
quantum system into a Hilbert space of greater dimension.
A general unitary operation that achieves this is the SWAP
operation, which exchanges the states of two quantum
4974
systems between their respective Hilbert spaces. Alice
must perform a SWAP operation to transfer the state of
her original quantum system H A

n described by (2) to an n-
dimensional subspace of a larger space, H A0

l , where l $

n and l � 2k for some integer k:

ji�Aj j�A0 ) j j�Aji�A0 when i, j � 1 to n ,

ji�Aj j�A0 ) j i�Ajj�A0 otherwise.
(14)

Since the size of FGy is simply equal to the number of
orthonormal vectors in Alice’s measurement basis, this
operation expands it to size l 3 l. In her new basis,
�j1�A0 , . . . , jl�A0�A, Alice describes the two possible states
(2) thus:

jc� � j1�A0 jh0
1�B 1 · · · 1 jl�A0 jh0

l�B ,

jf� � j1�A0 jn0
1�B 1 · · · 1 jl�A0 jn0

l�B .
(15)

Here, jh0
i�B and jn

0
i�B are new unnormalized vectors, but

remain describable in Bob’s original basis �j1�B, . . . , jm�B�.
Now her system has a convenient number of dimensions;
Alice proceeds as before. She will obtain and perform
a measurement guaranteeing Bob possesses one of two
orthogonal states.

SWAP operations like these are physically unproblem-
atic, and do not in any way derogate the entangled infor-
mation Alice shares with Bob. One physical realization of
this procedure requires just one ancillary qubit. Alice in-
troduces this qubit “Z,” known to be in state j0�Z to her
system, giving her state equations of form

jc� � j10�AZ jh1�B 1 · · · 1 jn0�AZ jhn�B

1 j11�AZ jhn11�B 1 · · · 1 jn1�AZ jh2n�B . (16)

Since qubit Z is in state j0�Z , we know all the unnormal-
ized vectors jhn1i�B have zero amplitude. This gives rise
to the rather lopsided FGy matrix, wherein �FGy�ij � 0
everywhere that either i . n or j . n. With this FGy

matrix, Alice’s problems are over. Between the numbers
n and 2n there lies a power of 2. Thus there is a sub-
matrix of FGy that includes all n nonzero terms, and just
enough zero-valued terms to round things out to the most
convenient dimensionality. Alice can find unitary manipu-
lations on this submatrix that transform it (and thereby si-
multaneously transform the FGy matrix as a whole) into
zero-diagonal form. She simply follows the procedure
outlined previously, obtaining a finite sequence of unitary
transformations that, taken together, represent a single ro-
tation of her measurement basis.

This unlikely procedure is surprisingly efficient for dis-
tinguishing jc� and jf�. No matter what the dimen-
sionality of the problem, there is a solution after a finite
number of steps: a number of steps equal to 1

2 l log2l, where
l is the expanded dimensionality. Through the use of this
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SWAP operation Alice can always accomplish perfect dis-
tinguishability with minimal effort.

We have considered only the bipartite case thus far, but
the strategy used by Alice and Bob can also be deployed
by any number of people. States of tripartite form, for
instance,

jc� � ja1�Ajb1�Bjg1�C 1 · · · 1 jan�Ajbn�Bjgn�C ,

jf� � ja0
1�Ajb

0
1�Bjg

0
1�C 1 · · · 1 ja0

n�Ajb
0
n�Bjg

0
n�C ,

(17)

can, when Alice swaps into a larger Hilbert space, easily
be represented thus:

jc� � j1�A0 jG1�BC 1 · · · 1 jl�A0 jGl�BC ,

jf� � j1�A0 jG�
1 �BC 1 · · · 1 jl�A0 jG�

l �BC .
(18)

Alice simply behaves as before, and leaves Bob and Claire
to distinguish between the resulting bipartite orthogonal
states. The problem collapses to its original formulation,
which we have already solved. If n people share the quan-
tum system, performing a series of n 2 2 such measure-
ments will cascade their problem down to the bipartite
case. We can conclude that two orthogonal states of any
quantum system, shared in any proportion between any
number of separated parties, can be perfectly distinguished.

Our procedure distinguishes perfectly between two or-
thogonal states, jc� and jf�. What if Alice and Bob must
distinguish between more than two orthogonal states? In
general, this will not be possible so long as Alice and Bob
share only one copy of their state. In whichever bases
they perform sequential measurements, their binary out-
come may not perfectly distinguish between more than two
possibilities.

It is natural to quantify Alice and Bob’s situation by
asking how many copies of their state they require to per-
fectly distinguish between it and the other possibilities. A
detailed analysis of this problem is beyond the scope of this
paper. Nevertheless, our basic procedure places an upper
bound on the number of copies required. n possible or-
thogonal states can be distinguished perfectly with n 2 1
copies.

Let us denote the possible states jci�. Alice and Bob
simply act on their first copy as if they were distinguishing
jc0� and jc1�. If the state they share happens to be either
jc0� or jc1�, then their measurement result will be a defi-
nite verdict in favor of one or the other possibility. If they
share instead some other jci�, since �ci jcj� � dij, Alice
and Bob’s measurement will randomly decide upon jc0�
some of the time, and will seem to measure jc1� otherwise.
A positive measurement for jc0� is no guarantee of Alice
and Bob sharing that state, for all the other states (bar-
ring jc1�) sometimes produce that result. What a verdict
for jc0� does show is that Alice and Bob definitely do not
share jc1�, which they would have detected with certainty.

Proceeding in this way, Alice and Bob can always use
a single copy of their state to exclude one possibility. Af-
ter n 2 1 such operations, they can have excluded n 2 1
states, and can thus distinguish between n possibilities.
This represents an upper bound upon the number of copies
required for state distinction. Note that there are certainly
sets of orthogonal states that can be distinguished using
less than n 2 1 copies. An example are the four Bell
states, where only two copies will suffice.

We have proved that any two orthogonal quantum states
shared between any number of parties may be perfectly
distinguished by local operations and classical commu-
nication. Since orthogonal states are the only perfectly
distinguishable states, this means that all pairs of distin-
guishable states are distinguishable with LOCC—global
measurements are never required. Whether nonorthogonal
states may also be optimally distinguished in this way re-
mains an open question.
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