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Spin-Driven Jahn-Teller Distortion in a Pyrochlore System
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The ground-state properties of the spin-1 antiferromagnetic Heisenberg model on the corner-sharing
tetrahedra, the pyrochlore lattice, are investigated. By breaking up each spin into a pair of 1�2-spins, the
problem is reduced to the equivalent one of the spin-1�2 tetrahedral network in analogy with the valence
bond solid state in one dimension. The twofold degeneracy of the spin singlets of a tetrahedron is lifted
by a Jahn-Teller mechanism, leading to a cubic to tetragonal structural transition. It is proposed that
the present mechanism is responsible for the phase transition observed in the spin-1 spinel compounds
ZnV2O4 and MgV2O4.

PACS numbers: 75.10.Jm, 75.40.Cx, 75.80.+q
Geometrically frustrated spin systems have been a fasci-
nating subject to study since Anderson’s pioneering work
on classical spins with a disordered ground state [1]. The
pyrochlore and the spinel compounds, both including the
three-dimensional (3D) tetrahedral network sharing the
vertexes, are the typical examples of such systems in na-
ture. As recent theoretical progress on pyrochlore spin
systems, it may be mentioned that the spin-1�2 antiferro-
magnetic (AF) Heisenberg model is shown to have a spin
liquid ground state [2] and that, even for the ferromag-
netic Ising model, a nontrivial effect of frustration leads
to a newly found spin ice ground state [3]. In this Letter,
we investigate the ground-state properties of the spin-1 AF
Heisenberg model on the pyrochlore lattice.

We follow a general strategy of constructing effective
variational wave functions, which approximately describe
the low energy states in the same spirit as the resonating
valence bond (RVB) [4] or the 1D valence bond solid
(VBS) approaches [5]. These simple pictures are of great
use to understand essential physics of the systems in a
more intuitive way. Our simple scenario, where the low
energy effective Hilbert space is assumed to adiabatically
continue to the manifold of the product wave functions of
the twofold degenerate spin singlets at each tetrahedron,
leads to a spontaneous breakdown of the lattice symmetry.
This new effect of the magnetoelastic interaction in the
pyrochlore spin system gives a consistent picture with the
recent experimental results on the insulating spin-1 spinel
compounds ZnV2O4 and MgV2O4 [6–11].

First, let us introduce the AF Heisenberg model on the
pyrochlore lattice, Fig. 1, in two different but equivalent
representations where the interactions are defined for the
sets of bonds and tetrahedra, respectively,

H � J
X
�i,j�

�Si ? �Sj � J
N4X

k�1

� �Stot
k �2

2
1 const, �J . 0� ,

(1)

where �S is the spin-1 operator and �i, j� denotes a near-
est neighbor pair. The index k, numbered from 1 to
N4, specifies a tetrahedron and �Stot

k represents the sum
of the four spins on the kth tetrahedron. For the present
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spinel compounds, we expect that the relatively small spin
value makes the isotropic limit a good starting point. On
the other hand, it is well known that there are strong
anisotropies for some rare earth titanates [3].

To tackle this problem, we develop an analogous method
with that of the VBS state, which captures essential physics
of the Haldane phase in 1D spin-1 systems. By breaking
up the original spin-1 into two spin-1�2 objects (denoted
by �s), we rewrite the Hamiltonian neglecting a constant
energy shift as follows:

H � P

(
4J

N4X
k�1

��sk1 1 �sk2 1 �sk3 1 �sk4 �2

2

)
P , (2)

where ��sk1 , �sk2 , �sk3 , �sk4� are the spin-1�2 operators form-
ing a tetrahedron. P is the operator to symmetrize the
states spanned for all pairs of the 1�2-spins on every ver-
tex and thus restricts the expanded Hilbert space to that of
the original spin-1 model. The 4 times larger coupling con-
stants are required so as to describe the original exchange
interactions by those within the 1�2-spins on each tetra-
hedron. The tetrahedron-unit representation of the spin-1
pyrochlore system has a significant difference from the
1D VBS state in the sense that our fundamental unit is
not a bond with two 1�2-spins but a tetrahedron with four
1�2-spins [12]. In particular, there is twofold ground-state
degeneracy which makes the situation more interesting as
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FIG. 1. The ideal locations of the vanadiums and oxygens in
ZnV2O4 and the network of the vanadium ions viewed from the
[111] axis.
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discussed below. We believe that this simple transforma-
tion is useful to grasp the essence of the low energy physics
of the original problem.

Following the general recipe for the 1D VBS state, we
first discuss properties of the fundamental unit. Since the
total spin of the tetrahedron is a good quantum number, the
two spin singlets constitute the degenerate ground states.
By using the linearly dependent three singlets whose
total sum equals zero, j2� � j

!
12

!
34 �, j3� � j

!
13

!
42 �, and

j4� � j
!
14

!
23 �, where j

!
ab

!
cd � is the product of the two

valence bonds, j
!
ab � � �"a #b2 #a "b��

p
2 and similarly

defined j
!
cd �, we express the tetrahedron singlets in

orthonormal bases,

jR� �

p
2

3
�j2� 1 vj3� 1 v�j4��, and jL� � jR��,

(3)

where v � exp�2pi�3� and v� its complex conjugate.
These are the bases of the E representation of the Td group
and are the eigenstates of the 62p�3 rotation around the
four different trigonal axes.

As a next step, we generate the direct products of the
local singlets. By symmetrizing the two 1�2-spins on every
vertex, we obtain the states

jcgs� � P

N4Y
k�1

�rkjRk� 1 lkjLk�� , (4)

defined for arbitrary �rk , lk� with jrkj
2 1 jlkj2 � 1. These

states are the ground states of the Hamiltonian represented
by a sum of the projection operators onto the total spin
three subspace (represented by P3) for the tetrahedron
made of four 1-spins. Because the four 1�2-spins, out of
the broken-up eight 1�2-spins, form a singlet state, then
the maximum total spin of the original tetrahedron must
be less than 3. To be explicit, the projection operator P3

of the kth tetrahedron is given by

P3
k �

1
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1
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�Stot

k �8. (5)

We assume that the Hamiltonian (1) and
P

k P3
k belong to

the same universality class and share the essential prop-
erties in the same way as the relation between the AF
Heisenberg model and the VBS model in one dimension
[13]. This assumption leads to a consistent picture for the
properties of ZnV2O4 as minutely discussed in the latter
part of this Letter. In the above argument, we supposed
that the symmetrized states do not vanish. As a matter of
fact, one can show by using the Schwinger boson represen-
tation that the direct products of any linear combination of
the form, Eq. (4), have the same nonzero norm even after
the symmetrization. Accordingly, although the exact di-
mension of the symmetrized states is not known, a macro-
scopic ground-state degeneracy of the order of 	2N4 is
expected for the model given by the projection opera-
tor. It is the key assumption of the present study that
the low energy part of the Hilbert space of Eq. (1) adi-
abatically continues to these symmetrized states of the
singlets’ products.

In real materials, the ground-state entropy must be zero
and it is quite natural to expect that the above-mentioned
macroscopic degeneracy is lifted. In what follows, there-
fore, we concentrate on finding some reasonable mecha-
nism which stabilizes the observed physical state among a
number of nearly degenerate ground states. As long as the
lattice symmetry remains cubic, it would be appropriate to
treat the problem as a pure spin system and investigate the
effects of the longer range interactions as well as the lat-
tice topology as a source of lifting the degeneracy. One can
argue that this type of lifting produces a kind of chiral or-
dering, which will be published elsewhere [14]. When the
interaction between the lattice and spin degrees of freedom
is more important, another way of lifting would take place
with spontaneous breaking of the cubic lattice symmetry
[15]. The energy loss from the lattice rigidity and gain
from the magnetoelastic interaction determine the stable
structure, a generalized Jahn-Teller effect of a novel type.
Thus it has some similarity with the spin-Peierls transition
usually discussed in 1D.

For this purpose we consider a single tetrahedron with
four vanadium sites (V1 V4) as shown in Fig. 1. To de-
scribe lattice vibrations around the stationary points ( �R0

i ),
let us define small deviations by �Ri � �R0

i 1 D �xi . Accord-
ing to the symmetry of the tetrahedron (Td point group),
the normal modes are classified into the A1 (QA: its normal
coordinate), E �Qu, Qy�, and T2 �Qj , Qh , Qz � representa-
tions after eliminating the uniform translation (T2) and the
uniform rotation (T1). The normal coordinates of A1 and
E representations are written as

QA�A1� � �X 1 Y 1 Z��
p

3 , (6)

Qu�E� � �X 2 Y ��
p

2 , (7)

Qy�E� � �X 1 Y 2 2Z��
p

6 , (8)

where X, Y , and Z are the uniform elongation for x, y, and
z directions, given by �2Dx1 1 Dx2 1 Dx3 2 Dx4��2,
�2Dy1 1 Dy2 2 Dy3 1 Dy4��2, and �2Dz1 2 Dz2 1

Dz3 1 Dz4��2, respectively; see Fig. 2.
From simple group theoretical consideration, the local

Hamiltonian, Hk , for a single tetrahedron is given, up to
the first order of deviations, by
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FIG. 2. The schematic representations of the normal modes
viewed from the c axis.
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Hk �
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where sG’s are the bases of the irreducible representations
made from the bilinear combinations of the spin operators,
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To illustrate the coupling constants, let us assume for
simplicity that the exchange coupling depends only on the
distance between the spins. Then J � J�r� and the deriva-
tives by each normal coordinate are given by 2≠J�≠r (A1

mode), ≠J�≠r (E), and
p

2 ≠J�≠r (T2), respectively.
In the ground-state spin-singlet subspace, the matrix ele-

ments for the T2 modes vanish and thus may be neglected.
By including the lattice restoring energy, Hk is given by

Hk � 2

p
3 gE

2
≠J

≠QE

Ç
0

�Qusx 1 Qysz�

1
k2

E

2
�Q2

u 1 Q2
y� . (11)

Here we have neglected the QA mode which simply renor-
malizes the Heisenberg coupling constant to J 1 �≠J�
≠QA�QA�

p
6. We have used the real basis, ju� �

�jL� 1 jR���
p

2 and jy� � �jL� 2 jR���
p

2i, and the
Pauli matrices are defined by sx � ju� �yj 1 jy� �uj and
sz � ju� �uj 2 jy� �yj. Concerning the symmetrization
P , its effect may be taken as a renormalization factor of
the order of unity [gA, gE , and gT in Eq. (9)]. In other
words, the form of the local Hamiltonian is determined
by the symmetry and the important properties such as the
equal coupling constants for the two components of the E
mode and the vanishing of the matrix elements of the sj ,
sh , and sz are generic independent of the symmetrization
on every vertex.

Up to this order, there is no force to determine u of
�Qy , Qu� � �r cosu, r sinu�, with r �

p
3 gEj

≠J
≠QE

j�2k2
E .

In order to fix this phase u, it is necessary to take some
anisotropies into consideration, such as the anharmonicity
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of the lattice restoration energy [16] or the higher order de-
viations of the magnetic exchange interaction [17]. After
some calculations including up to the third (for the lat-
tice part) and fourth orders (the spin part) of the lattice
deviations, respectively, we find both terms to be propor-
tional to cos3u, which means that the elongated or com-
pressed lattice structure along one of the a, b, or c axes
becomes the lowest state depending on the sign before
the cos3u term. We must distort each tetrahedron coop-
eratively all over the crystal without contradictions. For
example, a uniform local tetrahedral distortion causes a
uniform lattice metamorphosis and an alternating lattice
distortion develops another type of lattice distortion. In
any way, the many-fold degeneracy is lifted at this struc-
tural transition and a quenched local tetrahedral structure
is realized.

Now let us discuss an application of the present scenario
to the spin-1 normal fcc spinel compounds ZnV2O4 [6–10]
or isostructural MgV2O4 [7–9,11], where the magnetic
V31 ion, with a �3d�2 electronic state forming S � 1, re-
sides on every lattice point of the pyrochlore lattice. These
two compounds show similar properties and we will dis-
cuss ZnV2O4 mainly. At Tst � 50 K, a cubic to tetrago-
nal structural phase transition is observed [6,9,10], where
the crystal is uniformly compressed along the c axis with
c�a 	 0.994 without any magnetic ordering [6,9]. This
lattice structure is just what we expect by taking u � 0,
which leads to Qy . 0 and Qu � 0 in our theory. It is
important to consider the effect of the difference of the
u parameter (u � 0.260 [7,10,11]) from its ideal point
(1�4), which exists even above Tst. The distance between
vanadium and oxygen, lVO, is given by a�1 4Du��4, and
cos�VOV � 28Du in the lowest order of Du, where
Du � u 2 1�4. When the V-O-V angle is just the right
angle, the superexchange path through the oxygen van-
ishes and the spin-spin interaction may be ferromagnetic
(FM) due to the direct exchange. The experimental re-
sults imply that cos21�28Du� is sufficient for the AF su-
perexchange interaction to overcome the direct FM one.
By the distortion due to the Qy mode, the cosines of the
V-O-V in perpendicular and parallel to the c axis change to
28Du 2 4r�

p
6 a and 28Du 1 2r�

p
6 a, respectively.

The change of the angles means that the coupling constant
≠J

≠QE
j0 is positive; see Eq. (10). Therefore for a positive

Qy , as the experiments indicate, there is an enhancement
of the AF exchange in the perpendicular direction to the c
axis and the ju� spin state is stabilized at each tetrahedron.

The experimental magnetic susceptibility, x , shows a
weak temperature dependence above 100 K with a large
Weiss constant, uW � 420 K [7]. Below Tclus � 95 K,
x shows a splitting depending on the zero-field cooling
and field cooling, which was interpreted as development
of a short range or cluster ordering [6]. But its origin is
not clear yet. Below Tclus, x shows only a gradual increase
with decreasing temperature [6,7] and at Tst, x drops with
a sharp cusp structure [8]. This structure may be con-
sistent with the present scenario. Since the spin-singlet
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ground states themselves make no contribution to x , the
spin part concerned with thermally activated triplet states
and the Van Vleck–type orbital part may be relevant to the
total susceptibility. The separation of the doubly degener-
ate spin singlet at each tetrahedron [denoted by DS�0�T �]
tends to suppress the spin part, and the orbital fluctuation
in the vertical plane to the [111] axis is also suppressed.
Both terms reduce x with a sudden drop accompanied
by the structural transition, which is qualitatively consis-
tent with the experiments. With decreasing temperature,
the increase of DS�0�T � and the temperature dependent
part of x , still slightly increasing around Tst, may balance
to result in the almost temperature independent x below
Tst [6,8].

At TN � 40 K, a magnetic ordering sets in. The AF
structure is observed by neutron diffraction experiment at
4.2 K [10], where 1D AF chains along [110] and [110]
directions stack one after the other along the c axis with
the easy magnetization axis parallel to the c axis. This
magnetic structure is consistent with the change of the AF
coupling constants brought by the Jahn-Teller distortion
of the Qy mode. To understand the AF long range order
from the 3D VBS-like ju� spin states symmetrized on every
vertex realized at Tst, it is necessary to consider the effects
of higher triplet states.

Finally, let us discuss the electronic entropy, Sel, of
ZnV2O4. According to the trigonal distortion by the
positive Du, the threefold degenerate t2g states are ex-
pected to split into the higher a1g state and lower eg states.
This scheme of the splitting is expected since the wave
functions of the a1g and eg states are parallel and perpen-
dicular to the [111] direction, respectively. On the other
hand, for LiV2O4, the LDA 1 U calculation [18] suggests
that the a1g state becomes lower than the eg to gain the
coulomb energy of the singly occupied electron level of
the �3d�1.5 configuration, but this may not be the case for
the �3d�2 state. Suppose that the orbital degree of freedom
is almost quenched at higher temperatures, then the main
contribution to the electronic entropy around the structural
transition is the spin degrees of freedom in the spin-singlet
sector, which is estimated to be R ln2 � 5.76 J�mol ? K
and the lattice part additionally. This is consistent with
the experimental value of Sel 	 7 J�mol ? K just above
the Tst [9].

Another possible scenario for the structural transition
is, of course, the usual Jahn-Teller distortion at Tst. For
this scenario, it is necessary to assume that the a1g state
is lower than the eg states. However, the entropy asso-
ciated with the orbital degrees of freedom is 2R ln2 �
11.52 J�mol ? K, which is much larger than the entropy
observed experimentally. Note here that the spin degrees
of freedom are not included yet. It is also worth mention-
ing that for the present scenario of the spin-driven lattice
distortion, the energy scale should be a fraction of the ex-
change interaction J 	 102 K. The smallness of the Tst
and structural metamorphosis at Tst are compatible with
this small energy scale. On the other hand, for the conven-
tional Jahn-Teller effect concerned with the single electron
states, the energy scale is typically a fraction of an electron
volt (	104 K).

In conclusion we have studied the frustrating quantum
spin-1 system on the pyrochlore lattice as a theoretical
model of the insulating spin-1 spinel compound. In this
problem, it is essential to lift the many-fold degenerate
spin-singlet manifold to discuss the low energy physics. As
such a mechanism, a magnetoelastic interaction is consid-
ered in this Letter and we find the spontaneous breakdown
of the lattice symmetry, which is consistent with the struc-
tural phase transition observed in ZnV2O4 and MgV2O4.
Following this scenario, we can understand qualitatively
the low temperature behaviors of the magnetic susceptibil-
ity and the electronic entropy, which seems to be difficult
to explain by the usual Jahn-Teller effect. It is natural to
expect that the spin-driven structural transition discussed
in the present paper may be generalized to integer-spin
pyrochlore systems with isotropic interactions.
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