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Exact and Numerical Results for a Dimerized Coupled Spin-1���2 Chain
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We establish exact results for coupled spin-1�2 chains for special values of the four-spin interaction V
and dimerization parameter d. The first exact result is at d � 1�2 and V � 22. Because we find a very
small but finite gap in this dimerized chain, this can serve as a very strong test case for numerical and
approximate analytical techniques. The second result is for the homogeneous chain with V � 24 and
gives evidence that the system has a spontaneously dimerized ground state. Numerical diagonalization
and bosonization techniques indicate that the interplay between dimerization and interaction could result
in gapless phases in the regime 0 # V , 22.

PACS numbers: 75.10.Jm, 05.50.+q
The renewed interest in coupled spin-1�2 chains stems
from the belief that they are relevant to explain unusual
magnetic properties of a wide range of materials. For
certain compounds degenerated molecular orbitals may be
represented by extra isospin degrees of freedom which are
coupled with the true spin through superexchange [1–3].
This analogy has recently been used to propose and study
a variety of coupled spin-isospin models with potential
experimental relevance [3–5]. Other examples are the
so-called spin ladder systems [6]. In this Letter we study
the following dimerized coupled spin-1�2 chains:
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where �S
�a�
i , a � 1, 2 are two commuting sets of s � 1�2

operators (spin and isospin) acting on site i of a lattice
of size L. Notice that the dimerization d is completely
staggered, which seems to be the most interesting case
at least in the context of spin ladders [7,8]. In spin lad-
ders, the coupling V can be interpreted as a result of the
Coulomb interaction between holes in a doped phase [9].
Here, unless stated otherwise, we assume an antiferromag-
netic J . 0 Heisenberg energy scale.

Much of the theoretical efforts have been focused on
the study of the homogeneous chain both numerically
[5,10,11] and analytically [12,13]. In general, the inter-
esting features occur in the strong coupling regime where
perturbation theory does not work. In these cases it is im-
portant to have access to exact results since they can be
used as a test case for approximate nonperturbative meth-
ods. One such example is the point V�J � 4 in the homo-
geneous chain, which is equivalent to the integrable SU(4)
exchange spin chain [14,15]. This fact has been useful not
only to check numerical analysis [5,10] but also relevant
to trigger further nonperturbative studies [16]. One of the
0031-9007�00�85(23)�4956(4)$15.00
purposes of this paper is to point out that there exist two
other points in which the model (1) is still exactly solv-
able. Equally important, both results are concerned with
the strong coupling regime jV j ¿ J, namely,

�I� d � 1�2, V�J � 22 ,

�II� d � 0, V�J � 24 .
(2)

The exact solution enables us to derive analytical expres-
sions for the ground state energy and the low-lying gap ex-
citation. To our knowledge, the first case is a rare example
where we can provide the exact value of the energy gap for
an interacting spin chain with alternating bond strength. It
should be emphasized that this result is both at a feasible
value of the spin-Peierls dimerization and in a physically
meaningful regime of the coupling V [9]. The utility of
these exact results is threefold. First of all, since the low-
est gap excitation for case (I) is very small, it provides
us a relevant check of the reliability of numerical and ap-
proximate nonperturbative methods to distinguish between
gapped and gapless phases. Moreover, we present evi-
dence that the second case is an example of a system with
a spontaneous spin-Peierls effect. This lends support to
the prediction by Nersesyan and Tsvelik [9] that negative
four-spin interaction can induce non-Haldane spin-liquid
behavior in spin ladders. The novelty here is that this fact is
established at the very strong coupling regime V�J � 24,
which is beyond the reach of the approach of Ref. [9]. Fi-
nally, together, they motivate us to study the gap behavior
for arbitrary values of dimerization and interaction and to
search for possible gapless phases.

The exact integrability is derived by identifying the lat-
tice statistical model whose row-to-row transfer matrix
commutes with Hamiltonian (1) with the parameters d and
V�J given by (2). Such a classical statistical system con-
sists of two isotropic six vertex models coupled by the total
energy-energy interaction. The row-to-row transfer matrix
T �l� of a vertex model is usually written as the trace of an
© 2000 The American Physical Society
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ordered product of Boltzmann weights,

T �l� � TrA�L �1�
L,A�l�L �2�

L21,A�l� · · ·L
�1�

2,A�l�L �2�
1,A�l�� ,

(3)

where L
�a�

j,A�l� denotes the local Boltzmann weights with
auxiliary space A and quantum space j � 1, . . . , L, pa-
rametrized by the spectral parameter l. The auxiliary and
quantum spaces correspond to the horizontal and vertical
degrees of freedom of the coupled six vertex models to-
gether with four possible states per bond.

Essential to our approach is to notice that the Boltz-
mann weights can be conveniently written in terms of
two commuting Temperly-Lieb operators E
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2 Ij,A�4�, where Ij,A is the identity operator. More
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denoting the exchange operator, the R matrix R
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The weight v2�l� plays the role of the four-spin inter-
action V while a combination with v1�l� is responsible
for the dimerization d. These weights belong to a more
general class of systems that originally appeared in the
integrable coupled Potts models [17], and were recently
rediscovered in the context of Lorentz lattice gases and
Fuss-Catalan algebras [18]. For the cases we are inter-
ested in, their explicit expressions are

v1�l� �

(
el21

2 for I ,
0 for II ,

v2�l� �

8<
:

el�el21�
32el for I ,
sinh�l�

sinh�g2l� for II ,

(5)

where g � ln�2 1
p

3�.
As usual, the corresponding Hamiltonian is obtained as

the first-order expansion in l of the logarithm of T �l�.
By using the weights (5) it is not difficult to verify that
we indeed recover the Hamiltonian (1), up to irrelevant
rescaling constants, at the values given by (2). To make
further progress we have to explore other properties of the
transfer matrix. In particular, we are interested in estab-
lishing the inversion relation [19–21], since it provides us
the means to compute the ground state energy and excita-
tion properties. We will start by considering the most in-
volved model which is the case with non-null dimerization
d � 1�2. Even though the Bethe ansatz solution of this
model has eluded us so far, the inversion relation is suffi-
cient to provide us exact results for relevant quantities such
as the gap. For this system, the inversion identity follows
from a combination between the usual unitary property,
L

�a�
1,2 �l�L �a�

2,1 �2l� � I1,2, and a less standard crossing re-

lation for the weights L
�a�
1,2 �l�. While these operators are
not separately crossing symmetric, they do satisfy a novel
“mixed” crossing property, which reads

L
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where tk denotes the transpose and M
k

is a 4 3 4 antidi-
agonal matrix both acting on the space k. Together with
unitarity, this crossing relation allows us to derive the fol-
lowing inversion identity:

T �I��l�T �I��l 1 ln3� �

∑
v1�ln3 1 l�

v1�2l�

∏L

Id 1 T1�l� ,

(7)

where T1�l� is a matrix whose elements for large L are
exponentially small and Id is the identity. This means that,
in the thermodynamic limit, the last term in (7) vanishes,
providing us a much simpler functional equation for all
the transfer matrix eigenvalues. In particular, the largest
eigenvalue L

�I�
gs �l� per site satisfies

L�I�
gs �l�L�I�

gs �ln3 1 l� �
v1�ln3 1 l�

v1�2l�
. (8)

With the help of unitarity, L
�I�
gs �l�L�I�

gs �2l� � 1, it is
possible to solve the functional equation (8) under a plau-
sible analyticity assumption in the region 0 # l , ln3
(positive Boltzmann weights). The solution is
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which allows us to derive the exact value for the ground
state energy per site E

�I�
gs �J of Hamiltonian (1) at d � 1�2

and V�J � 22. This value is obtained by computing
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The inversion relation and trigonometric periodicity im-
pose stringent constraints on the form of the low-lying
excitations. They should be described in terms of mero-
morphic functions having two independent periods 2 ln�3�
and 2pi. This observation alone enables us to calculate the
dispersion relation [21] and from that one obtains the exact
value for the gap. Such a gap corresponds to the energy
necessary to create an excitation with total spin Sz � 1.
Here we omit further technicalities and the result for the
triplet energy gap D�I��J is

D�I�

J
�

Ỳ
j�1

∑
�1 2 32j�2�
�1 1 32j�2�

∏2

� 0.002 869 614 . (11)

Interesting enough, the energy gap is very small and this
has an immediate application. It could be used to test if
a given numerical or approximate nonperturbative method
can really make a clear distinction between a small gap
and a real gapless phase. In general, this is a difficult task,
and we expect that our exact result will be quite relevant
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VOLUME 85, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 DECEMBER 2000
to determine suitability of multiprecision methods in spin
ladder models. This should be important when one wants
to predict the scaling behavior of the gap as a function of
the dimerization [22].

We turn next to the second solvable point d � 0 and
V�J � 24. In this case, v1�l� is null and we are left only
with the product of two commuting isotropic six vertex
models. From the point of view of the classical statistical
model, this means that we are in fact dealing with an
alternative representation of the sixteen-state Potts model.
By now several properties of the general q-state Potts are
fairly well understood. In particular, the ground state and
the triplet gap can be determined either by the inversion
trick as above [21] or by a direct mapping onto the XXZ
Heisenberg chain [23] and they are given by
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1 1 4

X̀
j�1

1

1 1 �2 1
p
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and
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p

3�2j�

#2

� 0.779 604 542 .

(13)

Further interesting results can still be derived from the
mapping of the homogeneous model (1) at V�J � 24
onto the antiferromagnetic XXZ chain with anisotropy
Jz�Jx � 2 [21,23]. First, it is possible to show that
the gap of the first excitation in the sector of total spin
Sz � 0 vanishes exponentially as L ! `. The momen-
tum of this excitation is p, which leads to the conclu-
sion that in the thermodynamic limit the system has two
spontaneously dimerized ground states, in accordance with
the Lieb-Schultz-Mattis theorem [24,25]. This result sup-
ports the prediction by Nersesyan and Tsvelik [9] that a
four-spin interaction may induce dimerized phases in spin
ladder models. The bosonization arguments of Ref. [9] for
the weak coupling regime jV j�J ø 1 together with our
exact result at the very strong coupling point V�J � 24
indicate that such dimerized phase should be robust for a
rather large region of V , 0. Next, one can explain the
numerical observations by Pati, Singh, and Khomskii [5]
that the model (II), now for J , 0 , possesses an infinitely
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degenerated ground state. In fact, J , 0 corresponds to
the ferromagnetic regime of the XXZ chain, whose T � 0
finite entropy for Jz�Jx � 22 is exactly computed to be
ln�2 1

p
3�. This value is a rigorous confirmation of the

lower bound proposed in Ref. [5] for such residual entropy.
Considering these exact results, it is natural to ask if a

combined effect of dimerization and negative four-spin in-
teraction could lead to a gapless regime. To investigate this
problem we numerically diagonalize the Hamiltonian (1),
with periodic boundary conditions, up to L � 14 sites by
using a Lanczos-type algorithm. In Table I we exhibit our
numerical results for the ground state energy and the triplet
energy gap for both cases (I) and (II). The extrapolations
towards the infinite volume limit were performed by us-
ing the Van den Broeck–Schwartz method of convergence
[26]. While the results for the ground state are in good
agreement with the exact values, the gap estimates have a
rather poor accuracy. This emphasizes the importance of
our exact results, specially for model (I), since they clearly
show that one cannot trust the numerical gap estimates be-
yond two significant digits. However, we can still make
a qualitative comparison of the behavior of the gap in the
whole dimerization region 0 # d # 1 for various values
of the interaction V .

This is illustrated in Fig. 1 for three values of V in the
strong coupling regime. We observe that indeed for each
value of V�J the gap has a very small minimum for an
appropriate value of the parameter d. Note that for V�J �
22 this minimum occurs very near the solvable point
d � 1�2 where the gap is small but still finite. This helps
us to establish an upper bound for V�J, beyond which
one probably should rule out strictly null mass gaps. For
V�J , 22 we observe, however, that this minimum de-
creases faster towards zero, suggesting the possibility of a
gapless line on the plane �d, V�J� in the 0 # V�J , 22
regime. To provide an independent check of this possibility
we have analyzed the continuum limit of Hamiltonian (1)
by bosonization techniques [8,9]. For weak couplings this
analysis predicts a massless excitation on the critical line
jV j�J � d2 which is in accordance with our numerical
results up to an accuracy of two digits. Though these are
strong evidence of the existence of a massless line it is still
interesting to confirm this finding through more powerful
TABLE I. Finite size and extrapolated results for the ground state energy and the triplet gap
for cases (I) and (II). For comparison we also exhibit the exact results.

L E�I�
gs �J E�II�

gs �J D�I��J D�II��J

4 21.625 22.25 2.267 949 4.0
6 21.510 455 22.083 333 1.529 642 2.876 894
8 21.474 743 22.033 159 1.162 347 2.306 000

10 21.459 071 22.012 015 0.939 894 1.957 187
12 21.450 822 22.001 389 0.790 102 1.722 250
14 21.445 954 21.995 437 0.682 160 1.553 984

Extrap. 21.4331 �61� 21.983 �61� 0.011 �63� 0.744 �62�
Exact 21.433 126 21.984 444 0.002 869 0.779 604
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FIG. 1. Extrapolated triplet energy gap D�J for V�J � 21,
22, and 23. For V�J # 24 we no longer observed a local
minimum for the gap in the interval 0 # d # 1.

numerical methods such as the density matrix renormaliza-
tion group [27]. In particular, because this method could
provide good accuracy on the critical value V�J where the
gapless line starts and its performance can readily be tested
by using the exact gap value of case (I). In practice, how-
ever, when a gap is as small as we calculated, its effect
would be invisible at even low temperatures which may
still be considerably higher than the value of the gap.

In summary, we have pointed out the existence of two
integrable points in coupled spin-1�2 chains where rele-
vant physical quantities such as the ground state energy
and the excitation gap can be evaluated exactly. These
results together with the solvable SU(4) symmetric point
seem to exhaust all possible Bethe ansatz integrable cases
of Hamiltonian (1). In addition, numerical and bosoniza-
tion analyses indicate the possibility of a gapless line on
the plane �d, V�J� for 0 # V�J , 22. This then will add
another example of coupled spin chains in which a suitable
combination of dimerization and interaction strength is ca-
pable to close the energy gap [7,8]. We also hope that our
observations will motivate further numerical and analytical
investigation in related systems.
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