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Motivated by the strong, low temperature damping of nodal quasiparticles observed in some cuprate
superconductors, we study quantum phase transitions in dx22y2 superconductors with a spin-singlet, zero
momentum, fermion bilinear order parameter. We present a complete, group-theoretic classification of
such transitions into seven distinct cases (including cases with nematic order) and analyze fluctuations
by the renormalization group. We find that only two, the transitions to dx22y2 1 is and dx22y2 1 idxy

pairing, possess stable fixed points with universal damping of nodal quasiparticles; the latter leaves the
gapped quasiparticles along �1, 0�, �0, 1� essentially undamped.

PACS numbers: 74.20.Mn, 74.72.–h, 79.60.–i
Recent photoemission [1] and Thz conductivity [2]
measurements on Bi2Sr2CaCu2O81d, the cuprate su-
perconductor, have indicated anomalously large inelastic
scattering of fermionic quasiparticles near the gap nodes
in the d-wave superconductor. While many scattering
mechanisms and scenarios have been proposed [3–6]
for the damping of quasiparticles along the �1, 0�, �0, 1�
directions (the “antinodal quasiparticles”) above the
superconducting critical temperature Tc, the possibilities
below Tc at the nodal points are much more restricted and
allow us to make sharp distinctions between competing
theories. Standard BCS theory predicts a nodal scattering
rate �T3 from short-range interactions, and this is far too
small to account for the observations. In this paper we
study a possible explanation [7] due to the proximity to a
quantum phase transition to some other superconducting
state X (see Fig. 1). We show how global symmetry and
field-theoretic considerations permit a classification of all
possibilities for X, and we list those that may account for
the experiments.

The nodal quasiparticles at the gap nodes have a mo-
mentum distribution curve (MDC) with a width propor-
tional to kBT [1], and there is little change [8] in this
behavior when tuning T through Tc. The antinodal quasi-
particles are broad and ill-defined above Tc but narrow
dramatically below Tc, forming long-lived states with an
energy gap of 30–40 meV. A natural possibility, based
on other experimental probes [9], is that these effects are
due to their proximity to a quantum critical point to mag-
netic ordering. However, wave vector matching conditions
appear to rule this out for the nodal quasiparticles: the
magnetic fluctuations are strongest near wave vector Q �
�p , p�, and while they can strongly scatter antinodal quasi-
particles above Tc, they do not connect low-energy quasi-
particles near the nodes [8].

Rather than exploring the intricate details of the many
experiments, this paper performs the following well-posed
theoretical task: classify and describe theories in which a
d-wave superconductor at [10] T ø Tc has, with minimal
fine-tuning, (i) a nodal quasiparticle MDC with a width
~ kBT and possibly (ii) negligible scattering of the quasi-
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particles along �1, 0�, �0, 1�. We find that theories that sat-
isfy (i) also have a high frequency tail [11] in the energy
distribution curve (EDC) of the nodal quasiparticles, as is
experimentally observed [1,5].

Strong scattering of the gapless nodal quasiparticles
surely requires their coupling to some low-energy bosonic
mode. It is convenient to imagine that we have at our dis-
posal some parameter r (which is possibly the hole con-
centration d, but not necessarily so) which we can tune to
condense the bosonic mode, leading to a new supercon-
ducting state X for r , rc (Fig. 1). The quantum-critical
region of the phase transition at r � rc and T � 0 will
satisfy (i) provided the phase transition is below its upper
critical dimension, and the nodal fermions are intrinsic (in
a sense to be made precise below) degrees of freedom of
the critical field theory [12]. Conversely, (ii) requires that
the antinodal fermions are merely spectators of the phase
transitions and are essentially decoupled from the critical
degrees of freedom.

The most efficient scattering of nodal quasiparticles is
provided by a linear, nonderivative coupling between the
fermion bilinears and the order parameter; higher order
and derivative couplings have been considered recently
[7,13] and invariably lead [7] to quasiparticle scattering

FIG. 1. Phase diagram adapted from Ref. [7]. Superconduc-
tivity is present for T , Tc. The long-range order associated
with the state X vanishes for T . TX , but fluctuations of this
order provide anomalous damping of the nodal quasiparticles in
the quantum-critical region.
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rates that vanish with superlinear powers of T . Order pa-
rameters which carry a net momentum Q, will, by momen-
tum conservation, couple linearly with the nodal fermions
only if the spacing between two of the nodal points is ex-
actly Q. Transitions involving the onset of spin [14] or
site/bond charge density waves [7] (stripes) do satisfy [7]
(i) and (ii) for such values of Q; however, the restriction
on Q could be a fine-tuning condition and is not satis-
fied by the Q values observed so far. “Staggered-flux”
order [6,13] has a derivative coupling to the nodal fer-
mions, and Q � �p , p� which does not connect nodal
points: so (i) is not satisfied. Indeed, only the value Q � 0
naturally satisfies the constraints of momentum conser-
vation, and so we limit our attention to order parame-
ters at zero momentum. Furthermore, spin-triplet ordering
at Q � 0 implies ferromagnetic correlations which are
unlikely to be present, and therefore we further restrict
ourselves to spin-singlet fermion bilinears. This means
that our order parameter is a component of the complex
superconducting pairing function Dq � �cq"c2q#�, or the
real excitonic (or “particle-hole”) pairing function Aq �
�cy

qacqa� (cqa annihilates an electron with momentum q
and spin a � ", #). It is useful to decompose the functions
Dq and Aq into components which transform under one
of the irreducible representations of the symmetry group
of the Hamiltonian [15]: this is C4y 3 Z2, where C4y is
the tetragonal point group (see Table I), and the Z2 com-
ponent represents time-reversal symmetry T (point group
symmetry breaking has been considered recently [16,17],
as have exciton condensations [13] at nonzero Q). Generi-
cally, a second-order transition can occur only by conden-
sation of an irreducible component (multiple components
can appear in successive transitions), and this permits a
complete classification of inequivalent order parameters.
Note that dx22y2 pairing is already present for r . rc (see
Fig. 1), and we assume that this ordering remains well
formed across the transition; all our subsequent charac-
terizations of possible orderings in state X refer to addi-
TABLE I. Character table of the irreducible representations of
the group C4y . The C4 rotations are about the z axis, and
the I [I 0] are reflections about the �1, 0�, �0, 1� [�1, 1�, �1, 21�]
directions; the basis functions are chosen to be invariant under
translations by reciprocal lattice vectors.

E C2
4 2C4 2I 2I 0 Basis functions

s 1 1 1 1 1 1
p 2 22 0 0 0 �sinqx , sinqy�

dx22y2 1 1 21 1 21 cosqx 2 cosqy

dxy 1 1 21 21 1 sinqx sinqy

g 1 1 1 21 21 sinqx sinqy�cosqx 2 cosqy�

tional ordering beyond an implicitly assumed background
of dx22y2 pairing. Aq is necessarily even under T and
so can generate s, p, . . . exciton ordering; similarly Dq
can generate s, p, . . . pairing or is, ip, . . . pairing (the lat-
ter also break T ), leading to a total of 15 possible order
parameters for X. Of these, s exciton ordering is equiva-
lent to an innocuous shift in the chemical potential, while
p and ip pairing are forbidden by Fermi statistics. Be-
cause of the background dx22y2 pairing, further dx22y2 or
idx22y2 pairing is not a new ordering, while simple sym-
metry considerations (e.g., examination of the fermion dis-
persion relation in state X) show that g excitons, g pairing,
and dx22y2 excitons are equivalent to dxy pairing, dxy exci-
tons, and s pairing, respectively. Only seven inequivalent
order parameters now remain and we discuss their proper-
ties shortly.

We begin by reviewing the action for low-energy
fermionic excitations in a d-wave superconductor. We de-
note the components of cqa in the vicinity of the four nodal
points �6K , 6K� (K � 0.39p at optimal doping) by
(anticlockwise) f1a, f2a, f3a, f4a, and introduce the four-
component Nambu spinors C1 � � f1a, ´abf

y
3b� and C2 �

� f2a, ´abf
y
4b� where ´ab � 2´ba and ´"# � 1. Expand-

ing to linear order in gradients from the nodal points,
we obtain
SC �
Z d2k

�2p�2 T
X
vn

C
y
1 �2ivn 1 yFkxtz 1 yDkytx�C1 1

Z d2k
�2p�2 T

X
vn

C
y
2 �2ivn 1 yFkytz 1 yDkxtx�C2 .

(1)
Here vn is a Matsubara frequency, ta are Pauli matrices
which act in the fermionic particle-hole space, kx,y mea-
sure the wave vector from the nodal points and have been
rotated by 45± from qx,y coordinates in Table I, and yF ,
yD are velocities.

We now describe the seven possible order parameters for
state X, along with the respective actions for the quantum
phase transition.

(A) is pairing: This has been considered in Ref. [7].
The state X (with dx22y2 1 is pairing) has no gapless
fermionic excitations, breaks T , but all charge neutral
observables (like the charge density or lattice displace-
ments) retain the full C4y symmetry. The order parame-
ter transforms as a real, one-dimensional representation of
C4y 3 Z2 and so can be represented by a single, real field
f; this will also be true for (B)–(F) below, with only (G)
requiring a doublet of real fields. On general symmetry
grounds, following action for f is obtained after integrat-
ing out high-energy fermion modes:

Sf �
Z

d2x dt

∑
1
2

�≠tf�2 1
c2

2
�=f�2

1
r
2

f2 1
u
24

f4

∏
; (2)

here t is imaginary time, c is a velocity, r tunes the system
across the quantum critical point, and u is a quartic
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self-interaction. By itself, Sf would describe a critical
point at r � rc in the universality class of the classical,
three-dimensional Ising model. However, a coupling
to the low-energy fermionic modes in (1) can preempt
this conclusion [14]: its form can be deduced from the
values of the basis function in Table I at the nodal points,
and the information that the order parameter is in the
particle-particle channel —

SCf �
Z

d2x dt �lf�Cy
1 M1C1 1 C

y
2 M2C2�	 , (3)

where l is the required linear coupling constant between
the order parameter and a fermion bilinear, and M1 �
M2 � ty .

(B) idxy pairing: This is very similar to A, with the
main change arising from the new basis function in Table I,
which now implies M1 � 2M2 � ty .

(C) ig pairing: Also related to (A), but now the basis
function in Table I vanishes at the nodal points. Conse-
quently, the coupling between C and f requires at least
one spatial derivative and is irrelevant [7]. The action Sf

in (2) is the entire critical theory of the transition, and the
scattering of the nodal fermions is weak, arising only from
irrelevant couplings, and violates (i).

(D) s pairing: T remains unbroken, but the symmetry
of charge neutral observables is broken to C2y , so that X
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(with dx22y2 1 s pairing) is a superconducting nematic
[16,17]. The nematic order is polarized along the �1, 0�
or �0, 1� directions. For weak ordering, the state X retains
gapless nodal fermionic excitations, but the nodal points
are at �6K 0, 6K� with K 0 fi K; for a sufficiently large s
component, the nodal points disappear upon colliding in
pairs as min�K 0, K� ! 0, in a separate quantum critical
point which is not of interest here. As in (A) and (B),
coupling of the order parameter is described by (3), but
with M1 � M2 � tx .

(E) dxy excitons: This is as in (D), but symmetry of
charge neutral observables in X is broken to a different C2y

subgroup of C4y , with the nematic now polarized along the
diagonal �1, 61� directions. The nodal points in X are at
6�K , K� and 6�K 0, 2K 0� with K fi K 0. In the action (3),
we now have M1 � 2M2 � tz .

(F) dxy pairing: Such an ordering in X moves the nodal
points clockwise (or anticlockwise) from �6K , 6K�, re-
ducing the C4y symmetry to C4, while preserving T .
Again the action (3) describes the order parameter�fermion
coupling, but with M1 � 2M2 � tx .

(G) p excitons: The order parameter transforms under a
two-dimensional representation of C4y , requiring a doublet
of real fields, �fx, fy�, to describe the low-energy bosonic
modes. The state X retains T and the gapless nodal points,
but has C4y broken to Z2. The action (2) is replaced by
eSf �
Z

d2x dt

∑
1
2


�≠tfx�2 1 �≠tfy�2 1 c2
1�≠xfx�2 1 c2

2�≠yfx�2 1 c2
2�≠xfy�2 1 c2

1�≠yfy�2

1 e�≠xfx� �≠yfy� 1 r�f2
x 1 f2

y �� 1
1
24


u�f4
x 1 f4

y � 1 2yf2
xf2

y �
∏

, (4)
while the coupling between fx,y and C1,2 is

eSCf �
Z

d2x dt �l�fxC
y
1 C1 1 fyC

y
2 C2�	 . (5)

We now make a few general remarks on the field theo-
ries above. Upon integrating out the fermion fields, we find
a finite one-loop renormalization of the tuning parameter,
r . This should be contrasted with the behavior in a system
with a Fermi surface, where we would find the BCS in-
frared logarithmic divergence in the analogous term: this
is, of course, the reason that a T � 0 Fermi liquid is unsta-
ble to superconductivity for any attractive interaction. In
the present situation, the background dx22y2 superconduc-
tivity has reduced the Fermi surface to four Fermi points,
and so further pairing or excitonic instabilities occur at fi-
nite values of r and l. Indeed, this feature allows a nontriv-
ial quantum critical point, with a universal quantum-critical
region (Fig. 1); the fluctuations in this region will satisfy
(i) provided the quantum-critical point at r � rc, T � 0
is described by a fixed point of the renormalization group
(RG) transformation at which l approaches a nonzero and
finite fixed point value—then the scattering rate of the
nodal fermions will be determined by T alone [18].

The results of our RG analysis of (A)–(G) are simple
and remarkable. Only for (A), (B), and (C) do we find
a fixed point, accessed by tuning the parameter r; such
a fixed point describes a second-order quantum phase
transition at the critical point r � rc. For all other cases,
we find runaway flows of the couplings, with no nontrivial
fixed points, which suggests first-order transitions. As
we have already noted, the fixed point for (C) is the
Ising model —the nodal fermions are decoupled from
the critical degrees of freedom in the scaling limit, so
that (i) is not satisfied. Only (A) and (B) satisfy (i), with
the couplings l and u approaching nonzero fixed point
values: the nodal fermions and f are strongly coupled in
the critical theory, and the anomalous dimension of the
fermion field leads to a large v tail in its EDC [7,18].
The (A) and (B) fixed points are also Lorentz invariant —
the dynamic exponent z � 1, and the velocities renor-
malize to yF � yD � c in the scaling limit. Indeed,
these fixed points were discussed earlier [7], but only for
almost equal velocities; here we have established that
the equal-velocity fixed point is the only one for arbi-
trary initial velocities. However, the crossover exponent
which determines how rapidly the velocities approach
each other is negligible [7] (�0.05), so that a transient
regime with unequal velocities will be realized over
essentially all of the experimentally accessible regime.

The methodology of our RG is standard and details
appear elsewhere [19]. The familiar momentum-shell
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method, in which degrees of freedom with momenta
between L and L 2 dL are successively integrated out,
fails here: the combination of momentum dependent
renormalizations at one loop, the direction-dependent
velocities (yF , yD, c . . .), and the hard momentum cutoff
generate unphysical nonanalytic terms in the effective
action. So we obtained the RG equations by using a
soft cutoff at scale L and by taking a L derivative of
the renormalized vertices and self-energies. We obtained
equations for all the velocities, the dynamic exponent z,
and the field anomalous dimensions to one-loop order in
the nonlinearities l, u, y. For (D), (E), and (F) a simple
and robust effect preempts a fixed point: the structure of
M1,2 produces opposite sign renormalizations for yF,D, in
a manner that both flow equations cannot simultaneously
be at a fixed point; (G) required a more detailed analysis.

Our main result is that, among the seven transitions con-
sidered here, only for those involving onset of dx22y2 1 is
or dx22y2 1 idxy pairing in a dx22y2 superconductor did
we find a universal critical theory of coupled fermionic
and bosonic order parameter modes below its upper critical
dimension. Such transitions naturally satisfy (i). Upon fur-
ther imposing condition (ii), case (B), with dx22y2 1 idxy

pairing, is uniquely selected: from the basis functions in
Fig. 1 we see that f couples to fermions in all direc-
tions for (A), while the fermionic coupling vanishes along
the antinodal directions for (B)—so the gapped antinodal
fermions will [will not] lose the sharp quasiparticle peak
below Tc by emission of multiple f quanta, for (A) [(B)].

Pairing in the dx22y2 1 idxy channel has been consid-
ered in numerous works recently [20], with the order in the
ground state either global (induced spontaneously or by an
external magnetic field) or local (in the vicinity of defects
[21], surfaces [22], or vortices [23]). Here we require only
strong fluctuations of such order, induced by a proximity
to a hypothetical point in the phase diagram where global
order arises. While experimental discovery of such a point
is of course preferable, tests of our proposal would also
be provided by signals of f fluctuations. This is a spin-
singlet mode with dxy symmetry, odd under time reversal,
and at T � 0 it has spectral weight with mean frequency
of order ��r 2 rc�zn (where n is the usual correlation
length exponent)—we estimate this scale is �5 10 K; in
the quantum-critical region the characteristic energy scale
is kBT�h̄. Fluctuations of f should lead to anomalies in
Raman scattering [24] and Hall transport [25]: these issues
will be discussed in future work.
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