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New Classes of Quasicrystals and Marginal Critical States
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One-dimensional quasilattices, namely, the geometrical objects that represent quasicrystals, are clas-
sified into mutual local-derivability (MLD) classes. Besides the familiar class, there exist an infinite
number of new MLD classes, and different MLD classes are distinguished by the inflation rules of their
representatives. It has been found that electronic properties of a new MLD class are characterized by
the presence of marginal critical states, which are considered to be nearly localized states.

PACS numbers: 61.44.Br, 64.60.Ak, 71.23.Ft
Quasicrystals (QCs) have aperiodic ordered structures,
which are different from either crystalline or disordered
materials. It has been reported that QCs exhibit quite
unique physical properties [1], which should be closely
connected with the structure of QCs. A sufficient under-
standing in this respect is, however, yet to be attained. For
instance, in order to understand the transport properties of
QCs, further systematic studies on the electronic proper-
ties of various types of QCs are necessary.

The atomic positions of an idealized QC form a
quasiperiodic object called quasilattice (QL), the clas-
sification of which is the principal subject of the
crystallography of QCs. One of the important features
of QLs is the self-similarity, which is closely connected
with the physical properties. Thus, in the first part of
this Letter, we shall develop a new classification scheme
of QLs based on the self-similarity. One can argue that
the different classes of QLs correspond to different uni-
versality classes with respect to the electronic properties.
We next show that there exists a new class of QLs whose
electronic properties are characterized by the presence of
marginal critical states, which can be thought of as being
virtually localized. This feature is essentially different
from the case of the standard class of QLs on which most
of the previous studies have been done. The transport
properties of the new class may be markedly different
from the conventional one.

We confine ourselves to one-dimensional (1D) cases. A
1D QL is obtained by projecting a subset of a 2D lattice
L, the mother lattice, onto a 1D subspace Ek [2,3]. The
line Ek is taken to be parallel to ta1 1 a2 with a1 and a2
being the primitive lattice vectors of L and t a quadratic
irrational such as 1

2 �1 1
p

5� (the golden mean), 1 1
p

2
(the silver mean), etc. The subset is taken as L > S with
S being a parallel strip to Ek. If the scales of Ek and
E�, the physical space and its orthogonal complement, are
chosen appropriately, both the projections Lk and L� of
L onto Ek and E�, respectively, are given by the dense set
Z�t� � �p 1 qt jp, q [ Z�. Thus, a 1D QL is a discrete
subset of Lk, where its point density is proportional to the
window W , i.e., the width of the strip S. According to the
relative position of S to L, an infinite number of QLs are
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possible with the same W . But they form a single local-
isomorphism class, and their differences are irrelevant to
the physical properties.

For a generic W , one obtains a ternary 1D QL composed
of three types of lattice spacings: s, m, and l, referring to
short, medium, and long spacings, respectively; they sat-
isfy jlj � jsj 1 jmj. If W is reduced, one obtains another
QL as a subset of the original QL. The new spacings, s0,
m0, and l0, are composites of the older ones. For an appro-
priate choice of the reduction of W , the older QL turns out
to be a uniform decoration of the newer, i.e., the decoration
of l0, for example, is common for all l0s. The three deco-
rations of the spacings form a substitution rule. The newer
QL is then called a subquasilattice (SQL) of the older.

If W is reduced by the factor t2n with n being any
positive integer, the resulting QL is locally isomorphic
with the scaled version of the original QL with the factor
tn [4]. The original QL is called self-similar if the new
QL is an SQL of the original. Here, the substitution rule,
combining the three spacings of the original QL with the
newer ones, represents the self-similarity; it is called the
inflation rule. It can be shown that a QL can be self-similar
if and only if its window W belongs to the quadratic field
Q�t� � �r 1 st j r , s [ Q� [5]; that is, the window must
be rational. The inflation rule as well as the minimum
power n for the ratio of self-similarity, tn, depends on a
number theoretical property of W . The following argument
will be focused on this rational case.

Several QLs associated with the silver mean are
presented in Table I. The first two are binary but oth-
ers ternary. The QLs except for C and E have self-
similarities whose ratios are presented in the sixth column.
The QL C is not self-similar but is changed to the once-
inflated version of A by the substitution rule in the seventh
column. A similar relation holds between the pair �D, E�.
The QL A is an SQL of B with the substitution rule,
s0 � s, l0 � sm, and the QL F is an SQL of G with
s0 � m, m0 � l, l0 � msm. Though the two QLs G and
H are similar, there exists no inflation rule which combine
them.

We introduce an important relationship between QLs:
two QLs are mutually locally derivable if all the sites of
© 2000 The American Physical Society
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TABLE I. Several 1D QLs associated with the silver mean, t � 1 1
p

2. The first three belong to the type I MLD class, while
others belong to type II MLD classes.

W jsj jmj jlj Ratio Inflation rule (or substitution rule)

A
p

2 1 · · · t t s0 � l, l0 � sll
B 1 1

p
2 1

p
2 · · · t s0 � sm, m0 � sms

C 3 2
p

2 1
p

2 t · · · �s0 � sm, m0 � sll�
D 1 1

1
2

p
2 1

p
2 t t s0 � sm, m0 � sl, l0 � sll

E
p

2 1
1
2

p
2 1

p
2 t · · · �s0 � sm, m0 � ssm, l0 � slsm�

F 1
2 1

p
2 1

p
2 t t2 s0 � smsl, m0 � smsmsl, l0 � smsllsmsl

G
3
2 1

p
2 t21 1

p
2 t2 s0 � msm, m0 � mlmmsm, l0 � mlmlmmsm

H 1
2 1

1
2

p
2 1 t

p
2 t t2 s0 � msm, m0 � mlmmsm, l0 � mlmlmmsm
one of them are determined locally from the structure of
the other and vice versa [6]. All the QLs derived from
a single mother lattice are classified into an infinite num-
ber of mutual local-derivability (MLD) classes. The MLD
class to which a given QL belongs is determined by a num-
ber theoretical property of W [ Q�t�. We only present a
necessary condition: if two QLs belong to a single MLD
class, the relevant two windows have a common denom-
inator when they are represented as simple fractions in
the quadratic field. A QL and its any SQL belong to the
same MLD class. The eight QLs in Table I are divided
into three MLD classes: �A, B, C�, �D, E�, and �F, G, H�.
It can be shown that (i) every MLD class includes at least
one self-similar member, which can be taken as a repre-
sentative of the class, and (ii) every QL in the MLD class
has an SQL which is similar to the representative; that is,
any non-self-similar QL is a uniform decoration of a self-
similar QL.

The structure factor of a QL is composed of Bragg
peaks, whose intensities are determined by the size of the
window. For example, the three QLs, C, D, and F in
Table I, have windows of similar sizes, and their struc-
ture factors are not so much different. They nevertheless
belong to different MLD classes.

We shall call a QL to be type I or II according to whether
its window belongs to Z�t� or not, respectively. All the
type I QLs for a given t form a single MLD class, as
seen in Table I. Previous investigations on the electronic
properties of 1D QLs have been almost exclusively done on
the basis of models on type I QLs [7–9]. It has been proved
that a type I QL and its any decoration belong to a common
universality class of electronic properties [10], which are
dominated by the structures of the inflation rule. On the
other hand, we may expect that type II QLs belong to
different universality classes, because their inflation rules
are different from that of the type I class.

We now present a brief review on the electronic prop-
erties of type I QLs. The main observations, obtained
from the case of the Fibonacci lattice as well as some of
its associates, are [7] (i) the energy spectrum is purely
singular continuous or, equivalently, fractal-like, and
(ii) all the eigenfunctions are critical, i.e., neither extended
nor localized in the usual meaning. The energy spectrum
and the eigenfunctions have also been found to exhibit
self-similar structures, which can be directly related to
the inflation rule of the underlying QL by a real-space
renormalization-group approach [8].

The energy spectrum of any homogeneous 1D system
obeys locally a scaling law. The local scaling at the ref-
erence energy Er is represented by the scaling exponent
a � a�Er� satisfying 0 # a # 1 [7]. While a represents
the local dimension of the energy spectrum, it also charac-
terizes the localization character of the eigenfunction of the
energy level Er. In particular, an isolated energy level of a
localized state has a vanishing exponent, a � 0, while in-
side an absolutely continuous spectrum, which confirms
extended states, a � 1. A purely singular-continuous
spectrum being characterized by fractional exponents con-
firms critical eigenfunctions. The energy spectrum of a
type I QL is, in general, a multifractal [11], and is char-
acterized by the f�a� spectrum. The support of the f�a�
is an interval �amin, amax� with 0 , amin , amax , 1; a

ranges from amin to amax, so that every energy level is
characterized by fractional power-law scaling [7].

Although the above observations are common in the case
of type I QLs, electronic properties of type II QLs have
been scarcely investigated. In the following, we show
some numerical as well as analytical evidence that the
type II QL listed as D in Table I and shown in Fig. 1
indeed exhibits a new scaling property. Let us take a binary
atomic chain, which is obtained by decorating this QL as
follows: (i) atoms of type X are located on all the lattice
points, (ii) one atom of type Y is located on each spacing of
type m, and (iii) a pair of type Y atoms is located on each
spacing of type l. The densities of the two types of atoms in
the chain are equal. More remarkably, the chain is invariant
against the exchange of two types of atoms, X and Y.
We employ the tight-binding model on this atomic chain,
tCj21 1 VjCj 1 tCj11 � ECj , where we assume that
t � 21 for the transfer integrals and VX � 0 and VY � V
for the relevant site energies.

Because of the aforementioned symmetry of the atomic
chain, the energy spectrum becomes symmetrical which
is confirmed by the numerical result as shown in Fig. 2.
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FIG. 1. A ternary 1D QL given as D in Table I. It is self-
similar with the inflation rule in the table. The ratio of the
self-similarity is the silver mean, t � 1 1

p
2. The frequencies

of the three spacings s, m, and l are shown to be proportional to
t21:t22:t21 (2t21 1 t22 � 1).

The energy spectrum is divided into two equivalent clus-
ters, and the left cluster exhibits a hierarchical trifurcation,
which will reflect the nature of the leftmost level, i.e., the
ground state. The trifurcation can be understood in terms
of a perturbational real-space renormalization-group ap-
proach similar to that introduced by Niu and Nori for the
case of the Fibonacci lattice [8]. The approach is based
on the recursive structure of the QL and assumes V ¿ 1.
In the zeroth approximation, the spectrum consists of two
equally degenerate energy levels at E � 0 and V , while
the eigenstates are the Wannier states themselves. To see
the splitting of the level originating from the X atoms,
all the Y atoms are decimated as shown in Fig. 3. This
yields three types of effective transfer integrals between
X atoms, ts � 21, tm 	 21�V , and tl 	 21�V 2, which
are all negative and satisfy the inequalities:

jtsj ¿ jtmj ¿ jtlj . (1)

In the first approximation, we take only the leading ef-
fective transfer integral ts into account. Since the type s
spacings are isolated, the energy spectrum consists of three
sublevels at E � 0 and E � 6ts�� 71�; the central level
is derived from isolated atoms, while the two satellites are
derived from isolated diatomic “molecules.” The weights
of the three sublevels have the ratios t21:t22:t21, which
agree with the numerical results. To see the trifurcation
of the level derived from the molecular bonding states, we

-1 0 1 2 3 4 5 6
E

FIG. 2. A singular-continuous energy spectrum of the type II
QL given in Fig. 1. It was obtained numerically from a finite
approximant composed of 1970 atoms with V � 5.0. The left
cluster of energy levels exhibits trifurcating behavior when it is
expanded successively.
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shall consider the molecules to be the “atoms” of the sec-
ond generation. Because of the self-similarity of the QL,
there appear three types of effective transfer integrals be-
tween the new atoms as shown in Fig. 3:

t0s 	
1
2

tm, t0m 	
1
2

tl , and t0l 	
1
2

t2
l

ts
, (2)

where the numerical factor 1�2 appears as the square of the
bonding amplitude 1�

p
2. Since the new parameters satisfy

the same inequalities as Eq. (1), we can return now to the
point after Eq. (1) and continue the discussion recursively.
Thus, we obtain a hierarchical trifurcation spectrum. The
ground state is understood to be a hierarchical composite
of molecular bonding states, as shown in Fig. 4.

To make a quantitative argument, we introduce two pos-
itive parameters as the ratios between the effective transfer
integrals of the nth generation:

fn �
t�n�
m

t�n�
s

, gn �
t

�n�
l

t�n�
m

. (3)

Equation (2) yields the two-dimensional map, fn11 	
gn, gn11 	 fngn, which converges to the origin of the fg
plane. This means that the atoms are increasingly isolated
as n is increased. We can linearize this 2D map with
new variables, lnfn and lngn, and obtain the asymptotic
expression

fn 	 gn21 
 exp�2ctn
G� � exp�2ctnn� , (4)

with tG � �1 1
p

5��2, i.e., the golden mean, and n �
lntG� lnt 	 0.546. Note that tG is the leading eigenvalue
of the 2 3 2 matrix associated with the linearized map and
c a positive constant depending on V .

The bandwidth wn of the subcluster of the nth
generation is estimated to be wn 	 2jt�n�

s j. The rela-
tion t�n11�

s 	 1
2 t�n�

m as in Eq. (2) can be used to prove
wn11�wn 	 t�n11�

s �t�n�
s 	 1

2fn 
 exp�2ctnn�, which
tends to zero as n ! `. This is observed in Fig. 2.
Then, it can be proved that wn 
 exp�2c0tnn� with c0

being another positive constant. Since size L of the
atom of the nth generation is proportional to tn, we find
wn 
 exp�2�L�j�n�, i.e., a stretched exponential, with j

ts tl tltl tsts ts tmtm

tm' tl'ts' ts'

X Y

molecule
atom

FIG. 3. A perturbational real-space renormalization-group
treatment of the ground state. “Molecules” are separated by
three types of spacings, which are arranged similarly to the
underlying QL.
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FIG. 4. The ground state wave function of the approximant
composed of 1970 atoms with V � 1.0. Cj is the probability
amplitude on the jth site. This figure exhibits the molecular
bonding state of the eighth generation, where hierarchical inter-
nal structure is observed.

being a characteristic length. This is manifestly different
from the case of usual critical states exhibiting a power
law, wn 
 L21�a , and has never been observed in energy
spectra of type I QLs. Note that a power-law scaling
could be observed if the ratio wn11�wn had tended to a
finite value.

The above argument proves that the exponent a of the
ground state vanishes. This does not mean, however, that
the ground state is localized, because the ground state level
is not isolated from other levels. The length j, which de-
creases as V is increased and diverges as V ! 0, repre-
sents the size of almost isolated atoms. The presence of
a characteristic length implies that the ground state wave
function, shown in Fig. 4, is not self-similar, although it
still remains critical. We may call the ground state a mar-
ginal critical state, whose presence is closely connected
with the self-similarity of the present QL.

The exact real-space renormalization-group formalism
proposed by Ashraff and Stinchcombe [9] can also be
adapted to study the ground state properties. There appears
a 7D map but its asymptotic behavior is dominated by its
behavior in a 2D subspace corresponding to the fg plane.
The map being reduced to the subspace is essentially the
same as above. It has also been numerically confirmed
that each energy level at a band edge, where energy levels
accumulate only from one side, gives the equivalent fixed
point of the 7D map to that of the ground state level.

The presence of marginal critical states causes vanish-
ing of the left end amin of the support �amin, amax� of the
relevant f�a� spectrum. This is an important feature of
electronic properties of type II QLs, and has also been
confirmed for several other type II QLs including the one
whose ratio of self-similarity is t

3
G. The exponent n intro-

duced above is a proper number to the relevant MLD class
but satisfies 0 , n , 1. It is surprising that QLs derived
from a single mother lattice can belong to different univer-
sality classes of electronic properties.

The binary sequence of atoms in the atomic chain used
above to investigate electronic properties of type II QLs is
found to be one of the circle sequences investigated in de-
tail by Aubry et al. [12]. Some other type II QLs can also
be transformed to circle sequences if they are decorated
appropriately, but a general relationship between the type
II QLs and the circle sequences awaits further investiga-
tion. We should remark, however, that an indication of an
unusual electronic property of a circle sequence was first
reported by Luck [13].

The present report is summarized as follows: (i) 1D
QLs can be classified into an infinite number of MLD
classes, which are distinguished from each other by the
inflation rules of their representatives, and (ii) there exists
a “type II” MLD class whose electronic properties are
characterized by the presence of marginal critical states.

A full account of the exact real-space renormalization-
group treatment of marginal critical states will be presented
elsewhere. The present results can also be extended to
2D and 3D QLs because these QLs are related to 1D QLs
through the Ammann bars or planes [3], and the results
will be reported elsewhere.
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