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Molecular Motor that Never Steps Backwards
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We investigate the dynamics of a classical particle in a one-dimensional two-wave potential composed
of two periodic potentials that are time independent and of the same amplitude and periodicity. One
of the periodic potentials is externally driven and performs a translational motion with respect to the
other. It is shown that, if one of the potentials is of the ratchet type, translation of the potential in a
given direction leads to motion of the particle in the same direction, whereas translation in the opposite
direction leaves the particle localized at its original location. Moreover, even if the translation is random,
but still has a finite velocity, an efficient directed transport of the particle occurs.

PACS numbers: 05.60.Cd, 05.40.–a, 87.10.+e
A particle subject to a spatially asymmetric but on large
scale homogeneous potential displays a symmetric diffu-
sive motion, since the sole violation of the x ! 2x sym-
metry is not sufficient to cause a net directional transport.
As already noted more than 100 years ago by Curie [1],
the additional breaking of time reversal t ! 2t symme-
try (e.g., by dissipation) may lead to a macroscopic net
velocity, so that in this case directed motion can result in
the absence of any external force. Such systems, known
as thermal ratchets [2], have been the subject of much ac-
tivity, both theoretical [3–18] and experimental [19–25],
partly motivated by possible applicability to biological
motors [26–28].

In this Letter we study the classical dynamics of a par-
ticle in a one-dimensional two-wave potential. The total
potential is composed of two periodic potentials that are
time independent and of equal amplitudes and periodici-
ties. One of the potentials is externally driven performing
a translational motion with respect to the other. It is shown
that if, in addition to the broken time reversal symmetry,
the spatial symmetry is broken for one of the potentials,
the relative translation can result in a twofold behavior:
(i) Translation in one direction causes a deterministic mo-
tion of the particle in the same direction, whereas (ii) trans-
lation in the opposite direction leaves the particle localized
at its original location. Thus, the total potential acts as a
ratchet in the original sense. Moreover, an efficient di-
rected transport occurs even if the translation is random
but still has a finite velocity. The reason for the directed
transport is the existence of points of irreversibility in the
particle trajectory. The high rate transport stems from the
fact that, if the particle once gains a distance which is an
integer multiple of the potential period, this distance is pre-
served, different from former ratchet systems driven by
random fluctuations.

We consider a simple ratchet-type potential P�x�, which
is assumed to be continuous but not necessarily differen-
tiable. It has a periodicity b, so that P�x 1 b� � P�x�
; x, an amplitude P0 � maxP�x� � 2 minP�x�, and
one minimum is located at x � 0, i.e., P�0� � 2P0. We
also assume that the potential P�x� has only one minimum
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and one maximum per period b, so that ≠P�x��≠x changes
sign only twice for x [ �0, b�; cf. [29]. The total poten-
tial V �x, g� is composed of two, not necessarily identical,
potentials P�x� and P0�x�, i.e., V �x, g� � P�x� 1

P0�x 2 g�, where g defines the translation. Because of
the periodicity of the potentials P�x�, the potential V �x, g�
is periodic in both arguments, so that V �x, g 1 b� �
V �x, g� ; g. In this potential landscape, the determin-
istic equation of motion of a particle of mass m reads as

mẍ 1 h �x 1
≠V �x, g�

≠x
� 0 , (1)

where the damping is denoted by h. It should be empha-
sized that, through the translation, energy is being perma-
nently fed into the system, and that this energy has to be
dissipated, i.e., h . 0. Otherwise the particle will gain
energy until it decouples from the potential.

First, we restrict ourselves to the case characterized by
an overdamped motion with h���2p�b�

p
mP0 � ¿ 1 and

by a slow translation with j �gj��2p
p

P0�m � ø 1, where
�g is the translation velocity, and relax these restrictions
towards the end. In this limit, as the translation g is var-
ied, the particle either (i) moves slowly remaining at the
local potential minimum or (ii) if the minimum ceases to
exist it jumps to the next minimum following the potential
slope. The latter happens instantaneously on the time scale
of the translation. In order to obtain the observables, which
are the trajectory x and the average velocity �x, it is there-
fore sufficient to study the behavior of the total potential
V �x, g� and evaluate the positions of the minima. Below
this limit is referred as “quasistatic.” The initial conditions
at t � 0 are chosen as x � 0 and g � 0, so that the par-
ticle is located at a potential minimum. In what follows, we
use the abbreviations x̃ � x�bmod1 and g̃ � g�bmod1.

For simplicity, we start the discussion with a particular
example for the potential P�x�,

Pj�x� � P0

8<
:

21 1 2 x̃
j if x̃ # j

1 2 2 x̃2j

12j if x̃ . j
, (2)

which is piecewise linear, although the arguments below
apply analogously for other ratchet-type potentials as well.
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The parameter j [ �0, 1� determines the asymmetry of the
potential, with j � 1�2 being the symmetric case. In
order to introduce only one asymmetry, we choose the
translated potential P

0
j0�x� to be symmetric, i.e., j0 � 1�2.

For the other potential Pj�x� we use j , 1�2 only, since
the case j . 1�2 can be mapped on the case j , 1�2 by
replacing the asymmetry j by 1 2 j and the translation
g by 2g. The case j � j0 � 1�2, where both potentials
are symmetric, is excluded, since then the total potential
Vj,j0�x, g� becomes piecewise flat, and the “quasistatic”
treatment of Eq. (1) is no longer valid [30].

Let us first discuss a translation with a constant trans-
lation velocity �g � const, so that g � �gt, where the ve-
locity can be either �g , 0 or �g . 0. Shown in Fig. 1 is
one cycle of a translation by 2b [ �g , 0] and b [ �g . 0]
for an example with j � 2�5 and j0 � 1�2. In the case
�g , 0 [the open circles in Fig. 1; the time evolves from
1(h) to 1(a)], the particle moves a distance 2b, whereas in
the case �g . 0 [the full circles in Fig. 1, the time evolves
from 1(a) to 1(h)] the particle, although moving locally, re-
turns to its starting point. After that, the whole cycle starts
over again. Hence, the particle moves either with average

FIG. 1. Time evolution of the total potential Vj,j0 �x, g� for
the ratchet given by Eq. (2). In parallel, the respective posi-
tions of the particle are shown, both for �g . 0 [full circles,
the time evolves from (a) to (h)] and �g , 0 [open circles, the
time evolves in the opposite direction from (h) to (a)]. The pa-
rameters are j � 2�5 and j0 � 1�2, and snapshots are taken
at (a) g̃ � 0, (b) g̃ � 1�5, (c) g̃ � 2�5, (d) g̃ � 41�100,
(e) g̃ � 49�100, (f ) g̃ � 1�2, (g) g̃ � 4�5, and (h) g̃ � 0.
The arrows indicate the direction of irreversible motion of the
particle which occurs between snapshots (e) and (f) (full circle)
and (d) and (c) (open circle).
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velocity �x � �g for �g , 0 or �x � 0 for �g . 0. For the
opposite asymmetry j . 1�2, the particle remains in the
vicinity of x � 0 for �g , 0 and moves with average veloc-
ity �x � �g . 0 in the case of an opposite translation.

This behavior can be generally understood from the
properties of the total potential V �x, g�. Shown in Fig. 2
are the potential V �x, g� and the particle position x, for
both �g , 0 (left side) and �g . 0 (right side), calculated
for a particle located at x � 0 for translation g � 0, as
it follows the changes of the potential V �x, g�. Because
of the asymmetry of one of the constituting potentials,
there are points of instability I in the �x̃, g̃� plane, where
a local minimum of the potential V �x, g� ceases to exist.
Hence, when the minimum disappears, a particle located
at such a point performs an irreversible motion jumping
to the next minimum; see Figs. 1(c), 1(f), and 2. In the
example considered here, this new minimum moves in the
direction of the jump and a net transport occurs in the case
�g , 0, whereas in the case �g . 0 it moves in the opposite
direction and cancels the distance gained by the jump.
Under our restrictions on P�x�, in particular due to the
equality of the potential amplitudes, all points �x̃, g̃� [ I
satisfy V �x, g� � 0. Let C � ��x̃, g̃�jV �x, g� � 0� . I
be the set of all pairs �x̃, g̃� for which the potential
V �x, g� � 0. Since the potentials P�x� are continuous,
the topology of C is such that it consists of connected
points that form paths and intersections; see Fig. 2. The

FIG. 2. Contour plot of the total potential Vj,j0 �x, g� for the
ratchet given by Eq. (2) with j � 2�5 and j0 � 1�2; the solid
equipotential lines are placed at Vj,j0 �x, g� � 6nP0�5 with
1 # n # 10 integer, and the dash-dotted equipotential lines in-
dicate Vj,j0 �x, g� � 0. The respective trajectories of a particle
starting at position x � 0 at translation g � 0 are shown for
both �g , 0 (left side) and �g . 0 (right side) with thick lines,
which are solid for the part of the trajectory where the particle
remains in the minimum, and dashed for the irreversible jumps.
The arrows indicate the time development for �g , 0 (downward
arrows) and �g . 0 (upward arrows). The points of irreversibility
I � ��x̃, g̃�j�x̃, g̃� � �0, 1�2�, �2�5, 2�5�� are marked by dashed
circles.
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intersections correspond to the points of irreversibility I
in which a minimum of V �x, g� with respect to x ceases
to exist. For the particular choice of the potentials P�x�
given by Eq. (2), one obtains the two points Ij,j0 �
��x̃, g̃�j�x̃, g̃� � �0, 1 2 j0�, �j, j��. Within the quasi-
static limit, jumps in the direction given by the potential’s
asymmetry occur if the particle reaches these points.

In order to decide in general if, for a given choice of po-
tentials P�x�, a directed transport is possible within the
quasistatic limit, one has to examine the set C around
the intersection points I . In Fig. 3 the possible scenarios
are shown, each with sketched “horizontal” and “vertical”
lines corresponding to V �x, g� � 0 around the intersec-
tion points. Concerning the question of irreversible jumps,
namely, if the particle reaches the points of irreversibility
as the translation is monotonously varied, one has to ex-
amine the behavior of the horizontal line, i.e., how this line
is bent at the intersection point with respect to the direc-
tion of the translation. In the upper left part of Fig. 3 the
horizontal line is bent downwards towards smaller values
of g and, hence, opposite to the direction of the transla-
tion �g . 0 on both sides of the intersection point. This
means that (i) the minimum in which the sketched par-
ticle is located moves towards the intersection point as g

is increased (because of the downward bending on the par-
ticle’s side), and (ii) the minimum ceases to exist at the
intersection point with a local slope such that the particle
performs a jump leftwards to smaller values of x (because
of the downward bending on the side opposite to the par-
ticle). In the lower left part of Fig. 3, the horizontal line
is bent upwards on the particle’s side of the intersection
point, so that the minimum does not move towards the in-
tersection as g is increased, but remains always right to it
at larger values of x. This behavior is independent of the
bending on the side of the intersection point opposite to the
particle, either upward, as shown in the figure, or down-
ward. In the upper right part of Fig. 3, a third theoreti-
cally possible topology is shown. In this case, the particle
reaches the intersection point (because of the downward
bending on the particle’s side), but the intersection point is
not a point where the minimum ceases to exist (because of
the upward bending on the side opposite to the particle).

FIG. 3. Possible topologies for the set C around the points of
irreversibility I . The dashed lines represent V �x, g� � 0, and
the areas with V �x, g� . 0 and V �x, g� , 0 are indicated. The
particle’s position is shown as a solid circle.
However, this topology cannot occur under our restrictions
on the potentials P�x�. For the potentials P�x� given by
Eq. (2) and for j fi 1�2 or j0 fi 1�2, the resulting topol-
ogy of C is always such that the points of irreversibility
are reached within the quasistatic limit. Hence, depending
on the asymmetry of the potentials, one observes transport
for either �g , 0 or �g . 0, and no transport in the case of
an opposite translation.

We can extend the model beyond the translation with a
constant velocity, by assuming, for instance, another simple
scenario with an oscillatory translation of the form g �
g0 1 g1 sin�2pvt� with a driving frequency v and
jg1jv��2p

p
P0�m � ø 1. In this case, one finds an av-

erage velocity �x � 6nbv with n $ 0 integer, where the
sign depends on the asymmetry of the potentials P�x�. The
actual value of n depends on the offset g0 and on the am-
plitude g1, since these values determine how many times
the points of irreversibility I are reached during one cycle.
For the potentials P�x� given by Eq. (2) with j � 2�5
and j0 � 1�2, a choice of g0 � 45b�100 and g1 � b�20
results in an average velocity of �x � 2bv. This means
that, in order to make the particle gain a distance b, the
translation has to be varied only twice by b�10.

As a third possible scenario for the translation g, we as-
sume g to vary randomly by following the trace of a random
walker y that has locally a finite constant velocity 0 , j �yj �
const, but an average velocity �y � 0. For this scenario,
we relax the restriction of overdamped motion to demon-
strate the validity and accuracy of the quasistatic treatment,
and numerically integrate Eq. (1) with a finite damping and
a finite translation velocity. However, one has to keep the
restriction j �gj��2p

p
P0�m � ø 1, since otherwise the

changes in the potential due to the translation are too fast
for the particle to follow, and the particle decouples from
the potential. In Fig. 4 a realization of a random walker
trace y and the resulting particle trajectory x for j � 2�5
and j0 � 1�2 are shown. We would like to emphasize that,

FIG. 4. Plot of a random walk trace y [(a), in grey] used as
translation and the numerically obtained particle trajectory x
[(b), in black] for asymmetry parameters j � 2�5 and j0 �
1�2, and dissipation constant h���2p�b�

p
mP0 � � 0.2. The

random walker moves with velocity j �yj��2p
p

P0�m � � 0.02
and chooses the direction anew every t�t � 1 with t �
��2p�b�

p
P0�m �21, thus gaining a distance jDyj�b � 0.02

during each step.
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despite the relatively small damping, the numerically ob-
tained trajectory differs from the one obtained under over-
damped conditions only by small oscillations. Although
the random walker, and, hence, the translation, have an
average velocity �y � 0, respectively, �g � 0, the particle’s
average velocity �x is nonzero. The sign of the velocity
depends on the asymmetry of the potentials P�x�; for our
choice of asymmetry one finds �x , 0 as expected. The
transport is much more efficient than in former ratchet
systems driven by random fluctuations. Here, if the par-
ticle gains a distance d�t� � jx�t�j equal to an integer mul-
tiple of the potential period b at a time tn, d�tn� � nb, the
distance will never become smaller again, and d�t� $ nb
; t $ tn. Putting this in the context of molecular mo-
tors, it means that the suggested molecular motor never
executes a step backwards. These backward steps usually
limit the efficiency of the motor [8].

Different realizations of the model can be thought of.
One possibility is to put a small particle in a potential cre-
ated by an optical tweezer such as in [20], but with two
time-independent potentials added on top of each other at
the same place and having a certain phase shift. Although
the phase shift is changed randomly, but with a finite ve-
locity, an efficient transport of the particle is predicted in
a certain direction determined by the asymmetry of one of
the potentials. Moreover, it is possible, for instance, to in-
duce the translation of the potential through the coupling
of a varying internal degree of freedom of the particle to
the nontranslated potential [31]. This opens various pos-
sibilities for the construction of microscale and nanoscale
devices such as pumps and motors based on the presented
ratchet-type system.
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