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Ripple Formation through an Interface Instability from Moving Growth and Erosion Sources
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The propagation of material interfaces is investigated under the action of a localized moving source
which deposits or removes material. Among others the latter process applies to beam cutting techniques.
We develop a Kuramoto-Sivashinsky—type model and find a new type of ripple forming mechanism.
This theory offers a new explanation for the occurrence of striation patterns which often degrade the

quality of cutting edges.
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The dynamics of evolving interfaces is of great inter-
est in many disciplines ranging from physics, chemistry,
materials science, and fluid mechanics to image process-
ing and computer vision. It has been a topic of continuing
research for several decades, but found renewed interest
more recently in the nonlinear dynamics of pattern forma-
tion [1], fractal growth [2], and roughening phenomena [3].
In the latter context, most models for the surface dynamics
S(r, t) in continuous space r and time ¢ are defined by non-
linear partial differential equations of the form 9,S(r, t) =
F(VS(r,1),AS(r,t), A’S(r,1),...) + &(r,t), where £ is
a spatiotemporal noise term. The most prominent ex-
amples are the Kardar-Parisi-Zhang (KPZ) equation [4]
and the Kuramoto-Sivashinsky (KS) equation [5,6] in vari-
ous versions [7] without or with noise terms [8]. These
models apply for instance to growth and erosion processes
and describe systems with spatial translation invariance.
In practical applications, however, translational invariance
is broken due to the localized nature of the source which
causes growth or material removal. In addition this source
may be fluctuating in time or moving.

Our studies were motivated by such a problem arising in
a widespread industrial application, the technique of abra-
sive waterjet cutting [9,10]. This machining tool is used
to cut all sorts of materials ranging from titanium to ce-
ramics and compound materials: In a focused beam of
diameter =1 mm, abrasive particles (sand or garnet) are
accelerated by water and air up to velocities of approxi-
mately 900 m/sec. These fast particles impinge onto the
workpiece and remove material while the beam is moving
with a constant feed rate of several cm/min, producing a
cut with a depth of up to several centimeters (see Fig. 1).
A problem with this technique is that at high feed rates,
ripples and striation patterns are formed at the sidewalls
of the cut which degrade the quality of the cutting edge.
Similar patterns are observed with most beam cutting tech-
niques, such as laser [11], ion, or electron beam cutting. In
this paper we propose a simple model capturing essential
features of the interface dynamics caused by such moving
localized erosion sources.
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The cutting process can be described by the dynamical
evolution of the cutting surface, i.e., the interface S(r,¢)
between empty spaces, where the material has already
been removed, and the solid consisting of not yet removed
material. The rate of advancement of the interface de-
pends on the eroding action of the jet. For an initially
flat surface S(r,7 = 0) = 0 and for vanishing feed u = 0
(drilling) this rate varies in space according to a profile
function v(r). For a jet parallel to the z axis the latter de-
pends only on the transversal coordinates r = (x, y) and is
typically taken as a 2D Gaussian reflecting the spatial dis-
tribution of the kinetic energy density of the impinging
jet particles (energy density for laser jet cutting). With
increasing time the drilling or cutting front develops struc-
tures so that dependencies of the erosion rate on the angle
of impingement determined by VS, the curvature AS, and
higher derivatives of the interface S(r, t) become relevant.
Under cutting conditions the head typically moves with a
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FIG. 1. The geometrical arrangement of a cutting experiment:
The jet impinges perpendicularly on the workpiece while the
cutting head moves with velocity u into the x direction. The
jet causes a moving erosion front S(r,¢) in the workpiece thus
producing a cut.
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constant velocity u, i.e., the profile function has the form
v(r — ur). In a coordinate system comoving with the cut-
ting head the temporal evolution of the interface S(r, ) is
therefore assumed to obey the following equation in the
variables r = (x,y) and ¢:

9,8 = v(r)F(VS,AS,A%S,..) —u-VS. (1)

The new essential aspects lie in the localized profile func-
tion v(r) and the appearance of the convective term u -
VS from the transformation to the comoving frame. A pos-
sible noise term is neglected. An explicit form of F is ob-
tained by assuming that the dependence of the jet-material
interaction on the curvature and higher order derivatives of
S is small so that one may truncate a Taylor expansion of
F,ie,F = Fy(VS) + aAS + BA%S. A possible gradi-
ent dependence of a and B is assumed to be weak and
will also be neglected. A strong dependence of the pro-
cess efficiency on the impact angle, i.e., the angle between
the incoming jet and the momentary surface S(r, ¢), how-
ever, is established in many of the above-mentioned appli-
cations, e.g., for erosion phenomena [12], ion sputtering
[13], and laser jet cutting (see, e.g., [14]). This implies a
strong gradient dependence of F. For erosion phenomena,
as in abrasive waterjet cutting, and for brittle material the
functional form Fy = 1/[1 + (VS)?] is a reasonable ap-
proximation, while for ductile workpieces the maximum
wear is obtained for nonzero gradients [12]. Although we
already find, depending on F(y and u, various interesting
dynamical scenarios already for the Hamilton-Jacobi equa-
tion resulting for « = B = 0[15], no instability occurs on
this level of approximation. Only the inclusion of higher
order derivatives, i.e., « # 0, 8 # 0, can lead to unsta-
ble behavior. The destabilizing mechanism, however, does
not depend on the detailed form of F. For definiteness we
consider cutting of brittle material with feed along the x
axis, i.e., u = ué\x, resulting in

1

T(Vs)z + aAS + BA25> — uSy .

(2)

9,8 = v(r)(

For constant v the convective term can be transformed
away so that in the limit of small gradients VS, one re-
covers the well-known KS equation [5,6]. Thus our model
is a generalization of the KS equation to spatially inhomo-
geneous processes [16].

Let us first indicate the results for the (1 + 1)-
dimensional problem. Note in advance that for an infinitely
extended homogeneous system [v(x) = 1], one obtains,
as a stationary solution, S*(x) = ax + b, where a is the
solution of the equation ua = ﬁ Stability analysis
shows that in this case plane wave disturbances e*®)’¢?k*
decay or increase at a rate A(k) = —iku — ak® + Bk*.
S* is linearly unstable for 8 < 0 provided a < 0. The
wave number kp.x of the most unstable mode is deter-
mined by k2., = a/(2B). Although the full nonlinear,

max

homogeneous problem, which is not treated here, can
show behavior of similar complexity as the KS equation,
possibly modified by dynamical coarsening phenomena
[17], the occurrence of a most unstable mode is important
also for the inhomogeneous case, where the jet profile is
taken as v(x) = Nexp[—x?/(20%)] with N measuring
the mean effectiveness of material removal. The region
of relevant jet-material interactions of size =4¢ is chosen
to be of the same order as 27 /kmax. We may transform
Eq. (2) into a dimensionless form by measuring all spatial
distances in units of o and time in units of o/N. This
transformation shows that our model is defined effec-
tively by three independent dimensionless parameters
u' =u/N,a =a/c,and B’ = B/c> [18].

We investigated the evolution equations using a semi-
implicit hopscotch integration scheme (see, e.g., [19]). As
expected, one finds that a positive coefficient & > 0 al-
ways leads to a stable front. For « < 0, however, the be-
havior is more complicated and depends nontrivially on the
feed rate u. In the following we will consider in more detail
this case of “negative surface tension,” which is known to
be relevant for sputter erosion [7,8,20]. For erosion of sur-
faces by sand a similar destabilizing mechanism involving
the second spatial derivative has been proposed by arguing
that the microscopic cutting action of grains is more effi-
cient in valleys than on peaks [21]. For laser jet cutting
the origin of the observed instability is less clear [14].

A first scenario for the developing cutting front is shown
in Fig. 2a at four subsequent time instants. Here the im-
pinging jet (not shown) of intensity N = 2.5 and width
o = 2.5 is located near xo = 25, hitting the initially flat
surface S(x,t = 0) = 0 from above. Thus the area below
a curve S(x,t) corresponds to material left uncut, while
above S(x, ) material is already removed [22]. In the co-
moving frame of Fig. 2 the material is constantly fed into
the jet region from the right. All structures develop in the
jet region, i.e., in the interval (xg — 20,x9 + 20), and
are subsequently convected to the left. The latter follows
because outside the jet the evolution equation reduces to
the pure advection equation S; = —uS, with traveling so-
lutions S = f(x — ut). The function f is determined by
the processes in the interaction region. In Fig. 2a, where u
was chosen as u = —0.1, a stable stationary front is estab-
lished near the jet for large times (as in the case a > 0).
Figure 2b, in contrast, shows a very different behavior al-
though only the feed velocity was reduced to u = —0.06.
One finds a periodic growth of ridges in the jet region,
which asymptotically leads to a left traveling wave behind
the jet. In the laboratory frame, i.e., on the workpiece, this
corresponds to a spatially periodic structure left over by
the cutting process. The period of this structure is close to
the wavelength 277 /kyax of the most unstable mode of the
infinite homogeneous system.

An overview of the states of the fronts for different feed
rates at a late time instant is given in Fig. 3. The three up-
per curves lie in a stable regime, where a stationary front
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FIG. 2. Evolution of the cutting front S(x, ¢) for time instants
t = 100, 500, 1000, and 5000 (from top to bottom) from the
initial state S(x,¢) = 0 according to Eq. (2) for (1 + 1) dimen-
sions (¢ = —1, B = —5.066). (a) u = —0.1: The system
evolves to a state with a stable stationary front. (b) u = —0.06:
Asymptotically an oscillatory state is reached leaving a periodic
pattern at the bottom of the workpiece.

is established. There the feed rate u influences only the
height of the front, i.e., the cutting depth d., which varies
roughly as ~1/u as in real cutting processes [9]. Such
a dependence is expected because a given location on the
workpiece is exposed to the eroding action of the jet at a
time period of length o /u. From plots as in Fig. 3 (bot-
tom) the amplitude of oscillatory solutions can also be read
off. The dependence of this amplitude on the feed rate u
is shown in Fig. 4. One observes that the traveling wave
solution bifurcates from the stable stationary front solu-
tion. We have verified the occurrence of the bifurcation
by a linear stability analysis of the stationary front, which
shows that, as for a Hopf bifurcation, a conjugate complex
pair of eigenvalues crosses the imaginary axis. This sta-
bilizing influence of high feed rates is also known in the
field of waterjet cutting [9]. At this point let us briefly
elucidate the role of the nonlinearity Fo = 1/[1 + (VS)?]
by replacing it in Eq. (2) by its linearized form Fy = 1.
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FIG. 3. The surface S(x, 1) at a late time ¢ = 20000 for vari-
ous feed rates u = —0.061, —0.081, —0.101, —0.121 (from
bottom to top, other parameters as in Fig. 2). For decreasing
values of u the height of the front increases, leading eventually
to traveling wave behavior.

Numerical simulations of the resulting dynamics show that
instabilities under the jet increase indefinitely if they exist.
This clarifies the role of F(VS) in bounding the amplitude
of the unstable modes. Thus both the destabilizing and the
saturating mechanism act in the same spatially localized
region.

Since it is not obvious that the same instability exists
also in higher dimensions, we investigated the dynamics
of our model also in (2 + 1) dimensions. Figure 5 shows
an example of a numerical solution of the evolution equa-
tion [Eq. (2)]. One finds the same type of oscillatory insta-
bility of the stationary state for « < 0, which eventually
leads to a traveling wave state. A new aspectin (2 + 1) di-
mensions is that the wavelike modulation leads to spatially
periodic modulations at the lateral walls of the valley, i.e.,
the cutting edge of the considered workpiece. The forma-
tion of such characteristic ripples is found for the waterjet
cutting process [9], for laser beam cutting [11], and other
beam cutting techniques.

Finally we note that more complicated, secondary bi-
furcation scenarios leading to quasiperiodic behavior with
and without phase locking are found, if, e.g., the beam
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FIG. 4. Amplitude of the spatiotemporal modulation (for ¢t =
10°) as a function of the feed velocity u. The onset of an
oscillatory instability of the stationary front through a Hopf-like
bifurcation is found (parameters as in Figs. 2 and 3).
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FIG. 5. Evolution of the surface S(x,y,f) in (2 + 1) dimen-
sions (parameters « = —1.8, 8 = —3.283, u = —1, o =3,
N = 2.5, and t = 100). The instability leads to a spatial modu-
lation of the lateral walls (ripples on the cutting edge) and a
periodic variation of the depth of the valley.

width is chosen much larger than the wavelength 27 /kiax .
This is expected due to the complex dynamics of the re-
lated, but simpler, KS equation. In contrast to the generic
Hopf-like bifurcation scenario, which we found for a wide
range of parameters and which is reported in this Letter,
those higher bifurcations and other interesting spatiotem-
poral scenarios may not have universal character. They can
nevertheless be relevant for technical applications and will
be treated elsewhere.

In summary we have introduced a simple model describ-
ing the evolution of interfaces under the action, e.g., of a
localized moving erosion source. This model provides a
new type of ripple generating mechanism, which seems to
capture the essence of similar structure forming processes
observed with most beam cutting techniques.
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