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Classical Stark Mixing at Ultralow Collision Energies
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Exact solutions of the time-dependent classical equations are obtained for the full array of angular
momentum mixing transitions n� ! n�0 in atomic hydrogen induced by collisions with charged particles
at ultralow energies. A novel classical expression for the transition probability P�0� is presented. The
exact classical results for P�0��a� as a function of �, �0 and the Stark parameter a agree exceptionally well
with (exact) quantal results. They complement the quantal results by revealing essential characteristics
which remain obscured in the quantal treatment.

PACS numbers: 34.50.Pi, 34.10.+x, 34.60.+z
Stark mixing occurs when the electron of a Rydberg
atom (in a state with principal quantum number n) changes
its angular momentum, without changing its energy, as a
result of a collision, at large impact parameter b, with a
slow massive particle of charge Z1e moving with velocity
y. It is a subject of broad interest and importance in many
areas of modern physics [1] and chemistry [2], astrophysics
[3], line broadening [4], Auger processes [5], and for anti-
hydrogen formation by three-body recombination [6,7] at
ultracold temperatures. Although remarkable effort has
been devoted to obtaining theoretical solutions for Stark
mixing in Rydberg atoms to various levels of approxima-
tion [1–13], the purpose of this Letter is to point out that
the problem is capable of an exact solution in the classical
formulation. The exceptionally rich dynamical SO�4� sym-
metry of H�n, �� is the key foundation which allows both
classical and quantal exact solutions to be constructed [14]
in a similar and unified way. There is substantial renewed
[1,15–19] interest in the power of classical dynamics in
almost all fields of modern physics, attributed to the de-
sire [15,19] to obtain a more thorough understanding of
the classical-quantal correspondence. Stark mixing by ion
impact is probably the last problem in collision physics
which is capable of an exact solution.

The present new treatment is not an extension of any
previous theory and is capable of providing the first com-
prehensive classical solution for the full array n� ! n�0

of collisional transitions in H�n, ��. A new expression for
the classical transition probability P�0� is defined in a lan-
guage which exploits the dynamical symmetry. The de-
rived probability for the general array � ! �0 of transitions
has a very simple functional form, can be easily calculated
for any principal quantum number, and provides physical
insight and simple geometrical explanations for the behav-
ior of the transition probabilities. Stark mixing probabili-
ties are calculated and compared with the (exact) quantal
results [14,20]. Considering the Rydberg atom in a frame
which rotates together with the internuclear axis, the Stark
mixing problem can in principle be reduced [11,12] to the
problem of the Rydberg atom in mixed static electric and
magnetic fields. This approach is successful only for the
0031-9007�00�85(23)�4880(4)$15.00
particular case of � � 0, which is fully recovered by the
present general fixed frame formulation.

The target Rydberg atom (with averaged electron orbit
radius an, velocity yn, momentum pn, and angular fre-
quency vn � yn�an) is centered at the origin O of a fixed
coordinate frame. The trajectory of the projectile, initially
moving with impact parameter b along the positive Z
direction, is assumed to be confined in the YOZ plane. In
addition to the energy E, constant along the Hamiltonian
H0 � p2�2me 2 e2�r , the angular momentum L �
r 3 p of the unperturbed Rydberg electron and the
Runge-Lenz (or eccentricity) vector,

A � p21
n

∑
p 3 L 2 mee2 r

r

∏
, (1)

directed toward the pericenter and normalized to angular
momentum units, are also conserved. These quantities de-
fine the dynamic SO�4� symmetry of the hydrogen atom.
Because the SO�4� group is isomorphic with the direct
product SO�3� © SO�3� of two rotation groups, a special
decomposition, L � M 1 N and A � M 2 N, permits
the dynamics of the hydrogen atom to be separated into
two decoupled motions. The generators M and N act in-
dependently as angular momenta and are also conserved
quantities for the unperturbed Rydberg atom. They evolve
independently [21] with time on application of a con-
stant electric field �E and precess about �E with the Stark
frequencies �vS � 7�3�2�anyn� �E�e�. For weak fields,
the Stark splitting DES � h̄vS , h̄vn � DEn, the (n !
n 6 1) energy splitting. For constant fields, the vectors L
and A vary periodically with frequency vS .

The weak field approximation assumes that the time-
dependent electric field �E �t� generated by the passing
projectile of charge Z1e is constant over the atom’s spatial
extent and the dipole approximation for interaction poten-
tial V � e �r ? �E is valid. Hence

�E �t� � 2
Z1eR̂

R2 �
Z1e
yb

dF

dt
R̂ ,

where F is the polar angle between the internuclear vector
R and the Z axis.
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On assuming that the collision is orbital adiabatic ( �F ,

vn), �E is constant over one period so that the slow rate of
variation DL�T of the angular momentum over one orbital
period T � 2p�vn, is the classical average

dL
dt

� 2
e
T

Z T

0
�r 3 �E � dt � 2e�r� 3 �E �t� .

Since the weak field approximation (vS , vn) also holds,
the vectors L and A change very little over one orbital pe-
riod and �r� � 23A�2pn � 23 A�anyn�2e2�. The fol-
lowing set [3],

dL
dt

� 2vSR̂ 3 A,
dA
dt

� 2vSR̂ 3 L ,

of coupled equations can then be deduced, where both R̂
and vS � a �F now vary with time. The Stark parameter
a is 3Z1anyn�2by. The weak field (vS , vn) and adia-
batic ( �F , yn�an) conditions combine to yield the par-
titioning b $ �y�yn�an, when y $ y� � �3Z1�2�1�2yn,
and b $ �3Z1�2�1�2an, when y # y�, of �y, b� space for
validity of the present solutions. For y $ y�, a remains
#1. For y , y�, a can exceed unity. When written in
terms of vectors M and N, the above set of differential
equations yields the set of decoupled equations,

dM
dF

� 2aR̂ 3 M,
dN
dF

� 1aR̂ 3 N . (2)

Since the magnitudes M2 � N2 � �L2 1 A2��4 �
n2h̄2�4 remain constant throughout the collision, exact
solutions of Eqs. (2) can then be obtained [14] at general
angle F in terms of finite rotations from the initial
values M�F0� and N�F0�, via the orthogonal trans-
formations M�F� � UM�F, F0�M�F0� and N�F� �
UN �F, F0�N�F0�. For example, if the initial state is
specified by the vectors (L, A) at F0 � p , then the final
state (L0, A0), at F � 0, is determined by the rule
L0
1 � g22�1 1 a2 cos�pg��L1 1 ag21 sin�pg�A2 1 ag22�1 2 cos�pg��A3 ,

L0
2 � 2 cos�pg�L2 2 g21 sin�pg�L3 1 ag21 sin�pg�A1 ,

L0
3 � g21 sin�pg�L2 2 g22�a2 1 cos�pg��L3 1 ag22�cos�pg� 2 1�A1 ,

A0
1 � g22�1 1 a2 cos�pg��A1 1 ag21 sin�pg�L2 1 ag22�1 2 cos�pg��L3 ,

A0
2 � 2 cos�pg�A2 2 g21 sin�pg�A3 1 ag21 sin�pg�L1 ,

A0
3 � g21 sin�pg�A2 2 g22�a2 1 cos�pg��A3 1 ag22�cos�pg� 2 1�L1 .

(3)
Here g �
p

1 1 a2 and the components of the initial and
final vectors are defined in the fixed coordinate frame con-
sidered. The above exact solutions (3) are easily verified
and satisfy the invariant relations

L0 ? A0 � L ? A � 0 (4)

and
L02 1 A02 � L2 1 A2 � n2h̄2. (5)
The orbit of the final state �n, L0� is confined to a plane
perpendicular to the final L0 and the energy is preserved
(since n does not change). The above constraints, Eqs. (4)
and (5), define in the (L, A) space a hypersurface on which
the initial state, defined by the initial angular momentum
quantum number �, is uniformly distributed. The volume
of this hypersurface is therefore given by
Vn� �
ZZ

d�jLj 2 h̄��d�jAj 2 h̄
p

n2 2 �2 �d�L ? A� dL dA . (6)

Each point from this manifold evolves during the collision according to the rule (3), so that only a fraction of possible
initial states can produce the final state with angular momentum quantum number �0, after the collision. The volume of
(L, A) space which overlaps the initial and final states is

Vn��0 �
ZZ

d�jLj 2 �h̄�d�jL0j 2 �0h̄�d�jAj 2 h̄
p

n2 2 �2 �d�L ? A� dL dA . (7)
The � ! �0 transition probability is then, in a geometric
sense, the ratio of the two volumes

P
�n�
�0� �

Vn��0

Vn�
. (8)

This is a novel result in that Eq. (8) is defined in terms
of the new (L, A) representative space, being more appro-
priate, than the customary (r, p) phase space, for direct
expression of the dynamical SO�4� symmetry of H�n, ��.
The six-dimensional integral (6) can be calculated directly,
while the integral (7) eventually reduces to yield the one-
dimensional integral [14]

P
�n�
�0� �

2�0

p h̄n2

1
1 2 cosx

Z dzp
�z2 2 A� �B 2 z2�

for the transition probability. This, in turn, may be
expressed in terms of the complete elliptic integral,
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FIG. 1. Probability for the 18 ! �0 transition, within the
n � 28 energy shell, for a given Stark parameter a � 0.4.
Exact quantal results are denoted by dots.

K�m� �
Rp�2

0 �1 2 m sin2x�21�2 dx, as

P
�n�
�0��x� �

2�0�n2

p h̄ sin2�x�2�

8>><
>>:

0, B , 0 ,
K�B��B2A��

p
B2A

, B . 0,A , 0,
K��B2A��B�

p
B

, B . 0,A . 0,

(9)

where

A���n, �0�n; x� �
cos�u1 1 u2� 2 cosx

1 2 cosx
,

B���n, �0�n; x� �
cos�u1 2 u2� 2 cosx

1 2 cosx
.

(10)

The angles u1 and u2 depend only on the initial and final
states via cosu1 � 2�2�n2 2 1 and cosu2 � 2�02�n2 2 1.
The rotation angle x , which depends only on the Stark pa-
rameter a and the polar angle DF � F 2 F0 swept out
during the collision time interval (t0, t), is determined by

cos
x

2
� �1 1 a2 cos�

p
1 1 a2 DF����1 1 a2� .

FIG. 2. Density plots of the � ! �0 transition probabilities,
calculated within the quantal treatment for a � 0.4 and n � 28.
The probabilities increase as the color becomes darker. The
continuous and broken lines represent the classical A � 0 and
B � 0 ridges.
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The condition B , 0 defines the classical inaccessible
region. Two types of singular points are apparent from the
solution (9). At B � 0, the transition probability P�0��a�
has a finite jump (step discontinuity) and at A � 0 it
has a logarithmic (cusp) singularity. These features are
displayed in Figs. 1–5 for representative transitions. For a
given Stark parameter a and initial angular momentum �,
the solutions of the equations A � 0 and B � 0 provide
the critical values

�06 � �

Ç
cos

x

2
6

µ
n2

�2 2 1

∂1�2

sin
x

2

Ç

of the final angular momentum, where the cusp or step
singularities are located. The inequality A , B is strictly
fulfilled except for the limiting cases of � or �0 ! 0 or
n when A � B . These limits are readily deduced from
Eq. (9) to provide the following probabilities:

P
�n�
�00�a� �

�0��h̄n2�
sin�x�2�

p
sin2�x�2� 2 ��0�n�2

,

P
�n�
�0n�a� �

�0��h̄n2�
sin�x�2�

p
��0�n�2 2 sin2�x�2�

,

P
�n�
n� �a� �

1��h̄n�
sin�x�2�

p
���n�2 2 sin2�x�2�

.

The � ! �0 � 0 transitions have zero classical probability.
The specific case [12] of 0 ! �0 transitions is therefore
directly recovered from our general result (9).

Figure 1 shows the classical probability P
�28�
�0,18 for the

representative array � � 18 ! �0 transitions. The quantal
results [14,20] oscillate about the classical background.
Figure 1 also displays the A � 0 cusp at �02 followed by
the B � 0 downward step at �01, as �0 is increased from
0 to n. In the central region A , 0 and B . 0.

Figure 2 provides the density map of the quantal proba-
bilities [14,20] for the full array of � ! �0 transitions
at a � 0.4. In the classical forbidden regions (where
B , 0), the upper left and lower right corners, the quan-
tal probabilities decrease exponentially. The lines of singu-
larities A � 0 and B � 0 are also shown. Along these,
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FIG. 3. Probability for the 18 ! 2 transition, within the
n � 28 energy shell, as a function of the Stark parameter a.
Exact quantal results: dotted line.
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FIG. 4. Density plots of the � � 18 ! �0 transition probabili-
ties, calculated within the quantal treatment for n � 28, as a
function of a.

the classical transition probabilities display cusp and step-
like behavior, respectively, and, in their vicinity, the quan-
tal results have local maxima. Figure 1 follows from a
vertical line drawn through the plot at � � 18, show-
ing a cusp-step variation. Figure 2 predicts step-step and
step-cusp variations for transitions from � . 19.

In Fig. 3, the classical and quantal transition probabili-
ties for the 18 ! 2 transition are plotted as a function of
the Stark parameter a. This plot can also be obtained by
following the variation of the transition probability along
a horizontal line with �0 � 2 in Fig. 4.

Figure 4 presents a density map for the quantal proba-
bilities for transition from the initial angular momentum
� � 18 to any �0 and for any value of a. As a ! 0 the
span of possible final angular momenta is reduced, such
that only elastic transitions are possible at a � 0. The
classical singularity lines A � 0 and B � 0 illustrate
again the correspondence with the quantal results. The
cusp-step pattern of Fig. 1 is also explained by a vertical
line at a � 0.4 of Fig. 4. For low a , 0.4, a step-step
variation is predicted, i.e., the accessible �0 lie within the
range �02 , �0 , �01. The results in Fig. 5 confirm this
prediction. Cusp-cusp patterns occur at higher a $ 0.5.

In conclusion, the exact solution (3) of the classical
equations (2) has been obtained, by exploiting the SO�4�
dynamical symmetry of H�n, ��. The novel expression
(8) provides the general result (9) for the classical proba-
bility P

�n�
��0 for the full array of Stark mixing transitions

n� ! n�0. Since A and B are symmetrical in ��, �0�
the probability (9) satisfies the detailed balance relation
2�P

�n�
�0� � 2�0P

�n�
��0 . Probability conservation

Rn
0 P

�n�
�0�"d�0

� 1 is also satisfied. Cross sections [14] may be calcu-
lated from Eq. (9). Exceptional agreement is obtained be-

tween the classical and quantal P
�n�
��0 �a� as a function of

�, �0 and the Stark parameter a. The common SO�4� sym-
metry provides this classical-quantal correspondence at a
level more fundamental than Ehrenfest’s theorem and the
FIG. 5. As in Fig. 1, but for Stark parameter a � 0.18.

Heisenberg correspondence. The classical method is also
complementary in that it reveals very succintly essential
and valuable characteristics which remain obscured within
the quantal treatment. This reflects the essential power of
classical dynamics when applied to collision problems.
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Phys. JETP 30, 775 (1970).
[11] P. Bellomo, D. Farrelly, and T. Uzer, J. Chem. Phys. 107,

2499 (1995).
[12] A. Kazansky and V. Ostrovsky, J. Phys. B 29, 3651 (1996).
[13] A. K. Kazansky and V. N. Ostrovsky, Phys. Rev. Lett. 77,

3094 (1996); Sov. Phys. JETP 83, 1095 (1996).
[14] D. Vrinceanu and M. R. Flannery, Phys. Rev. A (to be

published).
[15] M. R. Flannery and D. Vrinceanu, Phys. Rev. Lett. 85, 1

(2000).
[16] M. Gryzinski and J. A. Kunc, J. Phys. B 32, 5789 (1999).
[17] V. S. Lebedev, J. Phys. B 24, 1977 (1991).
[18] D. Vrinceanu and M. R. Flannery, Phys. Rev. Lett. 82, 3412

(1999); Phys. Rev. A 60, 1053 (1999).
[19] K. G. Kay, Phys. Rev. Lett. 83, 5190 (1999).
[20] D. Vrinceanu and M. R. Flannery, J. Phys. B 33, L721

(2000).
[21] M. Born, The Mechanics of the Atom (Ungar, New York,

1960), p. 235.
4883


