
VOLUME 85, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 DECEMBER 2000

4852
Continuous Quantum Measurement and the Emergence of Classical Chaos

Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs
T-8, Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 16 June 1999; revised manuscript received 13 July 2000)

We formulate the conditions under which the dynamics of a continuously measured quantum system
becomes indistinguishable from that of the corresponding classical system. In particular, we demonstrate
that even in a classically chaotic system the quantum state vector conditioned by the measurement re-
mains localized and, under these conditions, follows a trajectory characterized by the classical Lyapunov
exponent.
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The emergence of classical chaos from quantum me-
chanics is probably the most important theoretical prob-
lem in the study of the quantum to classical transition.
Because of the absence of chaos in isolated quantum sys-
tems [1] and the noncommutativity of the twin limits h̄ !
0 (the semiclassical limit) and t ! ` (the late-time limit,
necessary to describe chaos), the fundamental mechanism
of how classical chaos arises from quantum mechanics
remains to be elucidated. While there has been much
progress recently in the development of sophisticated semi-
classical methods for chaotic dynamical systems [2], at-
tempts to unambiguously characterize notions of chaos in
the exact quantum dynamics [3] and to extract classical
chaos as a formal semiclassical limit have been less suc-
cessful: a rigorous quantifier of “quantum chaos” on par
with the classical Lyapunov exponents has yet to be found.
And, since formal techniques have so far not succeeded in
extracting trajectories from isolated quantum systems, they
have not been able to explain the generation of chaotic time
series in actual experimental situations. The experimental
state of the art has, however, reached the stage where the
quantum to classical transition can now be probed directly
[4]. So, it is crucial that one understand the mechanism
underlying this transition in order to interpret existing re-
sults and design future experiments.

As real experiments always deal with open systems, and
the interaction with the measuring apparatus necessary to
deduce classical behavior provides an irreducible distur-
bance on the free evolution of the quantum system, the re-
sulting decoherence and conditioned evolution could play
a crucial role in the emergence of the classical limit, and of
chaos, from the underlying dynamics. Indeed, some quali-
tative results in this direction already exist [5,6]. In this
Letter, we show that, even in the absence of any other in-
teraction with the environment, the theory of continuous
quantum measurements applied to the quantum dynam-
ics of classically chaotic systems provides a quantitatively
satisfactory explanation of how classical chaos, and Lya-
punov exponents characterizing it, emerges from quantum
mechanics.

Open quantum systems are often studied by writing the
evolution equation for the reduced density matrix obtained
by tracing over the degrees of freedom in the environment.
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Although this procedure, which leads to decoherence,
can be extremely effective in suppressing interference
effects and thereby making the quantum Wigner function
approach the corresponding classical phase space distri-
bution function [5,7], it does not succeed in extracting
localized “trajectories” from the quantum dynamics. With-
out the existence of such trajectories it is difficult, if not
impossible, to rigorously quantify the existence of chaos
both mathematically and in actual experimental practice.
Since in order to extract classical trajectories systems
must be observed, one expects observed quantum systems
to obey classical dynamics in the macroscopic limit.

What is therefore desired is an unraveling of the master
equation which provides a more detailed understanding of
the trajectories underlying the average system dynamics.
When these detailed trajectories follow classical dynamics
(albeit noisy), one can infer that the average distributions
generated by them also become classical. This then pro-
vides a “microscopic” understanding of the quantum to
classical transition demonstrated, e.g., in Ref. [5] using an
environment-induced decoherence model.

The first requirement in this program is to have a good
model of continuous quantum measurement. Even though
“continuous” measurement is always an idealization,
real experimental situations exist which approximate it
extremely closely, and simple models which correspond
accurately to these processes have now been developed
[8–11]. These models show that as a necessary result
of the information it provides, continuous measurement
produces and maintains localization in phase space. On
the other hand, the Ehrenfest theorem guarantees that
well-localized quantum systems effectively obey classical
mechanics. As the measurement process, in addition to
localizing the state, also introduces a noise in its evolution,
to obtain classical mechanics one must be in a regime in
which the localization is sufficiently strong and, yet, the
resulting noise sufficiently weak [6]. We show that such
a regime exists, and is precisely the one which governs
macroscopic objects, i.e., h̄ ø S, the action of the system.
In what follows, we refer to this regime as the classical
regime. Our central result is that, once this regime is
achieved, the localized trajectories for the continuously
observed quantum system obey the classical dynamics
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(possibly chaotic) for that system driven by a weak noise.
As a result, even at a finite but nonzero value of h̄, the
quantum trajectories possess the same Lyapunov expo-
nents as the corresponding classical system. As one goes
deeper into the classical regime with h̄ ! 0, one can
make the noise progressively smaller by optimizing the
measurement, and, in the limit, the intrinsic classical
Lyapunov exponents are recovered.

In order for this mechanism to satisfactorily explain
the quantum-classical transition, the following conditions
need to be satisfied: (1) localization as discussed above,
(2) suppression of measurement noise, (3) the actual value
of the measurement strength should become irrelevant, and
(4) the measurement record (i.e., the actual results of the
continuous measurement process), suitably bandlimited,
should follow the classical trajectory. These conditions
are studied in more detail below.

We consider, for simplicity, a single quantum degree of
freedom, with position and momentum operators denoted
by X and P, evolving under an unperturbed Hamiltonian
P2�2m 1 V �X�. Quantum mechanics then dictates the fa-
miliar Heisenberg equations of motion for these opera-
tors: �X � P�m and �P � 2≠XV �X� � F�X�. Except in
the limit h̄ ! 0, a continuous observation with finite mea-
surement strength does not localize either the position or
the momentum completely. Nevertheless, we can describe
the state of the particle in terms of the central moments of
X and P and, anticipating the limit, assign it to a point in
phase space given by the mean values �X� and �P�.

The most natural measurement to use is a continuous
measurement of position, not only because this is often
what is observed with mechanical detectors, but also be-
cause real schemes for the continuous measurement of
position, considered in the field of quantum optics, may
be described very simply [12]. In addition, a continuous
measurement of position is an unraveling of the thermal
master equation in the high temperature limit, so that re-
sults demonstrated for this case also apply to decoherence
due to a weakly coupled, high temperature thermal bath.
We stress, however, that we do not expect the particular
measurement model to affect the results significantly; any
measurement or interaction which produces a localization
in phase space should lead to classical behavior in essen-
tially the same manner.

Under continuous position measurement the evolution
of the wave function becomes stochastic. The stochas-
tic master equation for the density matrix r�t�, condi-
tioned on the measurement record �X� 1 j�t� with j�t� �
�8hk�21�2dW�dt, is [12]

r�t 1 dt� � r 2

µ
i
h̄

�H, r� 2 k���X, �X, r����
∂

dt

1
p

2hk ��X, r�1 2 2r TrrX� dW , (1)

where k is a constant specifying the strength of the mea-
surement, h is the measurement efficiency and is a number
between 0 and 1, and dW is a Wiener process, satisfying
�dW�2 � dt. When h � 1, the evolution preserves the
purity of the state and can be rewritten in a way which al-
lows it to be understood as a series of diffuse projection
measurements [10] on an unnormalized wave function c̃:

jc̃�t 1 dt�� � e22kdt	X2��X�1j�t��
2

e2iHdt� h̄jc̃�t�� , (2)

where j�t�, the difference between x � �X� and the mea-
sured value of the position, becomes a white noise in the
limit that dt tends to zero. Under this continuous measure-
ment process, the average values of position and momen-
tum evolve according to

d�X� � ��P��m� dt 1
p

8hk Vx�t� dW , (3)

d�P� � �F�X�� dt 1
p

8hk Cxp�t� dW , (4)

where Vx is the variance in position, and Cxp is the sym-
metrized covariance between X and P [13]. Thus the effect
of the measurement is to provide some zero-mean noise
proportional to the square root of the measurement strength
k and to the width of the distribution. It is important to
note, however, that this is just the first in a hierarchy of
equations for the moments; the equations governing the
second moments contain terms depending on higher mo-
ments, and so on up the hierarchy.

Even though the structure of the hierarchy makes it al-
most impossible to obtain analytic answers to questions re-
garding the behavior of the variances, and resulting noise
strength, which are the crucial quantities determining the
quantum to classical transition, we can, nevertheless, dis-
cuss the effect of varying h̄ by truncating the hierarchy at
the second order, and looking at the steady-state solution
for the variances. These equations show that to maintain
enough localization to guarantee that, at a typical point on
the trajectory, �F�X�� � F��X��, as required in the classi-
cal limit, the measurement strength, k, must stop the spread
of the wave function at the unstable points [14], ≠xF . 0:

8hk ¿

Ç
≠2

xF

F

Ç s
j≠xFj

2m
. (5)

Note that this condition is automatically satisfied for lin-
ear systems, where quantum dynamics of the expectation
values are identical with classical evolution.

On the other hand, a large measurement strength intro-
duces noise into the trajectory. If we demand that, aver-
aged over a characteristic time period of the system, the
change in position and momentum due to the noise are
small compared to those induced by the classical dynam-
ics, it is sufficient that, at a typical point on the trajectory,
the measurement satisfy

2j≠xFj

hs
ø h̄k ø

j≠xFjs
4

, (6)

where s is the typical value of the action [15] of the system
in units of h̄. Obviously, as s becomes much larger than
2
p

2 h21�2, this relationship is satisfied for an ever larger
range of k, and this defines the classical limit.

Finally, in experiments one usually considers the mea-
surement record itself rather than the estimated state of
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the system as we have done. As measurement introduces
a white noise, it is important to investigate the condition
under which the record tracks the estimate faithfully. If
Dt is the time over which the continuous measurement is
averaged to obtain the record, and we allow ourselves a
maximum of Dx as the position noise, it is easy to see that
the measurement strength needs to satisfy

8hk .
1

Dt�Dx�2 . (7)

With this introduction, we consider, as an example,
a bounded, one-dimensional, driven system with the
Hamiltonian,

H � P2�2m 1 BX4 2 AX2 1 LX cos�vt� , (8)

with m � 1, B � 0.5, A � 10, L � 10, v � 6.07. This
Hamiltonian has been used before in studies of quantum
chaos [16] and quantum decoherence [5] and, in the pa-
rameter regime used here, a substantial area of the acces-
sible phase space is stochastic. The numerical method
used to solve Eq. (1) is a split-operator, spectral algorithm
implemented on a parallel supercomputer.

Simulations at various values of h̄ confirm that as h̄ is
reduced, both the steady-state variance and the resulting
noise (for optimal measurement strengths) are reduced, as
expected. As the dynamical time scale of this problem is
1 2 0.1, we decide to average the continuous observation
record over a period of 0.01. Similarly, as the range of
the motion covers distances of O�10�, we demand that the
position be tracked to an accuracy of 0.01. By Eq. (7), this
means we need hk � O�105� or larger. In our example,
we choose the energy to be O�102�, the corresponding typi-
cal action turns out to be O�10�, and the typical nonlinear-
ity makes the right-hand side of Eq. (5) O�1�. We see that
a choice of h̄ � 1025, h � 1, and k � 105 satisfies all
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FIG. 1. (a) The quantum trajectory in phase space, with h̄ �
1025 and k � 105. (b) The position variance, Vx , as a function
of time.
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the constraints for a classical motion. In Fig. 1 we demon-
strate that in this regime localization is maintained in spite
of low noise. Figure 1(a) shows a typical phase space tra-
jectory, with the position variance during the evolution,
Vx � �DX�2, plotted in Fig. 1(b). We find that the width
DX is always bounded by 3.4 3 1023. Furthermore, as is
immediately evident from the smoothness of the trajectory
in Fig. 1(a), the noise is also negligible on these scales.

Thus, we find that continuous measurement can effec-
tively obtain classical mechanics from quantum mechan-
ics. We substantiate this further by demonstrating that
the trajectories we obtain show the common signatures of
classical chaos. A direct way to compare qualitatively the
global nature of the quantum and classical trajectories in
phase space is to compare the stroboscopic maps (the dis-
tribution of the locations of the system at a constant phase
of the driving term). Figure 2 demonstrates the excellent
correspondence between the classical and quantum maps
in this regard.
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FIG. 2. (a) The quantum stroboscopic map with h̄ � 1025 and
k � 105. The figure is a pastiche from several different runs
with different initial conditions, for a total duration of 39 000
periods of the temporal drive. (b) The stroboscopic map for
the corresponding classical system, driven with a small amount
of noise.
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FIG. 3. Lyapunov exponents, l, calculated for (a) the classical
system driven with a small amount of noise, and (b) the continu-
ously observed quantum system, with h̄ � 1025 and k � 105.
The slope of the line drawn through the curves gives the Lya-
punov exponent, which in both cases is l � 0.57�2�.

On a more quantitative level, we now calculate the key
characteristic of chaos, the maximal Lyapunov exponent,
l, and compare it against that of the classical system driven
with a similar amount of noise. We start with the def-
inition of l: that for a chaotic system the distance be-
tween two nearby trajectories, D�t�, evolves, on average,
as lnD�t� � lt, as long as D�t� is small and t is large.
To calculate this we take 10 fiducial trajectories starting at
the point �23, 8�, and at 17 points along each trajectory,
separated by time intervals of 20 each, we obtain neigh-
boring trajectories by varying the noise realization. The
distance between the fiducial and these neighboring tra-
jectories is tracked for a time interval of 8. The values
of lnD�t� thus obtained are averaged over all the instances
and plotted versus t in Fig. 3, both for the classical (with
a small amount of noise) and the continuously measured
quantum systems. For very small separations D, the noise
dominates, which gives rise to an initial steep slope. This
is followed by a linear region dominated by the Lyapunov
exponent. Eventually D�t� becomes large and the curve
flattens out. The behavior of the observed quantum and
noisy classical systems are essentially indistinguishable,
and the Lyapunov exponent 0.57(2) is the same for both.
Performing the analysis with the classical system without
noise, this time using 50 fiducial trajectories with initial
points in a neighborhood of �23, 8�, we obtain a Lyapunov
exponent of 0.56(1), in agreement with the previous val-
ues.

After having demonstrated that in the classical regime
the localization and low noise conditions are satisfied si-
multaneously, we study the sensitivity to the measurement
strength. To this effect, we vary k between 2 3 104 and
5 3 105. The Lyapunov exponents remained unchanged
within the quoted errors; only at k � 5 3 105 did the
noise start to wash out the flat region of the curve.
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