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Consider a time-dependent Hamiltonian H ���Q, P; x�t���� with periodic driving x�t� � A sin�Vt�. It is
assumed that the classical dynamics is chaotic, and that its power spectrum extends over some frequency
range jvj , vcl. Both classical and quantum-mechanical (QM) linear response theory (LRT) predict
a relatively large response for V , vcl, and a relatively small response otherwise, independent of the
driving amplitude A. We define a nonperturbative regime in the �V, A� space, where LRT fails, and
demonstrate this failure numerically. For A . Aprt, where Aprt ~ h̄, the system may have a relatively
strong response for V . vcl due to QM nonperturbative effect.

PACS numbers: 03.65.–w, 05.45.Mt, 73.23.–b
The wall formula for the calculation of friction in nu-
clear physics [1] and the Drude formula for the calculation
of conductance in mesoscopic physics are just two spe-
cial results of a much more general formulation of “dis-
sipation theory” [2–5]. The general formulation of the
“dissipation” problem [4] is as follows: Assume a time-
dependent chaotic Hamiltonian H ���Q, P; x�t����. For x �
const, the energy is constant of the motion. For nonzero
V � �x the energy distribution evolves, and the average
energy increases with time. This effect is known as dis-
sipation. Ohmic dissipation means that the rate of non-
conservative energy absorption (“heating”) is d�H ��dt �
mV 2, where m is defined as the dissipation coefficient. In
case of periodic driving x�t� � A sin�Vt�, one should re-
place V 2 by the mean square value 1

2 �AV�2, and the dissi-
pation coefficient m�V� becomes frequency dependent.

In the case of the wall formula, �Q, P� is a particle
moving inside a chaotic “cavity,” and x controls the defor-
mation of the boundary. Ohmic dissipation (in the sense
defined above) implies a friction force which is propor-
tional to the velocity, where m is the “friction coefficient,”
and mV 2 is the heating rate. A mesoscopic realization
of such a system would be a quantum dot whose shape
is controlled by electric gates. In case of the mesoscopic
Drude formula, �Q, P� is a charged particle moving inside
a chaotic “ring,” and x is the magnetic flux through the hole
in the ring. Ohmic dissipation implies Ohm law, where
0031-9007�00�85(23)�4839(5)$15.00
V � �x is the electromotive force, m is the conductance,
and mV 2 is the heating rate. For a mesoscopic realization
of such a system note that ring geometry is not important.
One may consider a simple two-dimensional quantum dot
driven by a time-dependent homogeneous perpendicular
magnetic field [6].

In the general analysis of the dissipation problem [4,5],
one argues that due to the driving there is diffusion in
energy space. This diffusion process is biased because of
its E dependence, leading to a systematic increase of the
average energy. This is the reason for having dissipation.
Therefore we find convenient from now on to consider the
diffusion coefficient DE as the object of our study. The
relation between d�H ��dt and DE constitutes a generali-
zation of the so-called fluctuation-dissipation relation.

Ohmic dissipation is implied if DE ~ V 2, or DE ~ A2

in the case of periodic driving. Such behavior can be estab-
lished within the framework of classical mechanics [2,3]
using general classical considerations [7]. The classical
formulation of the dissipation problem [5] can be regarded
as a systematic scheme that justifies the use of classical
“linear response theory” (LRT). The precise conditions for
the applicability of the classical LRT result are further dis-
cussed in [4,5], and we are going to mention later what we
call “the trivial slowness condition.” We are interested in
the quantum-mechanical (QM) theory of dissipation. The
traditional derivation [8] of QM LRT leads formally to the
© 2000 The American Physical Society 4839
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same result as in the classical analysis [5]. Therefore, from
now on we no longer distinguish between the “classical”
LRT result and the “quantal” LRT results and use just the
term “LRT result.” As a matter of terminology, it should
be noted that the QM formulation of LRT, also known as
Kubo-Greenwood formalism, is completely equivalent [5]
to the well-known Fermi golden rule (FGR) picture.

So let us assume that the obvious classical conditions
for the validity of the LRT result are satisfied [9]. Now
the question is whether, upon quantization, there are addi-
tional h̄-dependent conditions for the applicability of the
LRT result [9]. In the traditional quantum mechanical lit-
erature, as well as in the recent mesoscopic literature, the
focus is on the consequences of having finite mean level
spacing D. This leads to the identification of the QM-
adiabatic regime (extremely slow driving) and to the dis-
cussion of either the Landau-Zener mechanism [3] or the
Debye relaxation absorption mechanism [12] for dissipa-
tion, as well as to the discussion of QM resonances. The
main observation of [13] is that there is another regime,
the nonperturbative regime (see Fig. 1), where QM LRT
is not valid. As strange as it sounds, this does not im-
ply a failure of the LRT result. On the contrary, another
observation of [13] is that the regime where the classical
approximation applies is well contained in the nonpertur-
bative regime, hence the LRT result becomes valid again
because of quantal-classical correspondence (QCC) con-
siderations. However, if the system does not have a good
classical limit [as in random matrix theory (RMT) mod-
els] this “recovery” of the LRT result is not guaranteed.
Moreover, as discussed later, QCC consideration cannot
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QM-resonance
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V
non-perturbativeQM-adiabatic linear-response

FIG. 1. Upper diagram: The various V regimes in the the-
ory of quantum dissipation for linear driving x�t� � Vt. Lower
diagram: The various �V, A� regimes for periodic driving
x�t� � A sin�Vt�. Note the analogy with Fig. 5 of Ref. [5] with
x $ A and V $ AV. The QM-adiabatic regime (including the
regime A , Ac, but excluding the narrow stripes of QM reso-
nances) is defined by having vanishing first-order probability go
to other levels. See the text for further explanations and defini-
tions of Ac and Aprt.
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exclude the possibility of having a relatively large quantal
nonperturbative response whenever the LRT result is small
in comparison.

The outline of this Letter is as follows: (i) We extend
the theoretical considerations of [13] to the case of periodic
driving. (ii) We give a specific example where the LRT
result fails because of a quantal nonperturbative effect.
(iii) We comment on the issue of localization. (iv) We dis-
cuss the role of QCC considerations in the theory. Based
on the theoretical considerations, the reader should real-
ize that the existence of the nonperturbative regime is not
related to having finite mean level spacing D, but rather
to having finite bandwidth Db � h̄vcl, where vcl is the
dropoff frequency of the LRT response. In the context of
mesoscopic physics this bandwidth is known as the Thou-
less energy.

Given H �Q, P; x� with x � const, we can define a fluc-
tuating quantity F �t� � 2≠H �≠x. The autocorrelation
function of F �t� will be denoted by C�t�. The power
spectrum C̃�v� is defined as its Fourier transform. The in-
tensity of fluctuations is defined as n � C̃�0�, and it is con-
venient to define the correlation time as tcl � C̃�0��C�0�.
We assume for simplicity of presentation that the single
time scale tcl completely characterizes the chaotic dynam-
ics of the system: The power spectrum of the chaotic mo-
tion is assumed to be continuous, and it is nonvanishing
up to the cutoff frequency vcl � 2p�tcl. We assume that
C̃�v� is vanishingly small for v . vcl.

Consider the time-dependent case x�t� � A sin�Vt�.
The LRT result for the diffusion in energy is

DE �
1
2 C̃�V� 3

1
2 �AV�2 (1)

and we shall use the notation D0 �
1
4n�AV�2. The most

transparent QM derivation of this result is based on the
FGR picture. The energy levels of the systems are En,
and the mean level spacing is D. The Heisenberg time is
tH � 2p h̄�D. The transitions between levels are deter-
mined by the coupling matrix elements �≠H �≠x�nm. It
is well known [14] that for reasonably small h̄ this ma-
trix is a banded matrix. The bandwidth is Db � 2p h̄�tcl,
and the variance of the in-band elements is s2 � n�tH.
It is common to define the QM system using the four pa-
rameters �D, b, s, h̄�, where b � Db�D. It is also use-
ful to regard the semiclassical relations tcl � 2p h̄��bD�
and n � �2p h̄�D�s2 as definitions whenever the clas-
sical limit is not explicitly specified [as in RMT models].
The FGR picture implies strong response if and only if
h̄V , Db , leading to V , vcl as in the classical case.
Using the FGR picture it is straightforward to recover
D0 � �p�2� �h̄�D� �sAV�2 in agreement with Eq. (1).

The trivial slowness condition for the applicability of
classical LRT [4,5] is Vtcl ø dxcl

c . Here dxcl
c is the

parametric change that leads to the breakdown of the lin-
earization of H �Q, P; x 1 dx� with respect to dx. Upon
quantization there are two other parametric scales that
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become important [5], namely, dx
qm
c and dxprt. The for-

mer is the parametric change which is required in order to
mix neighboring levels, while the latter is the parametric
change required in order to mix all the levels within the
band. Hence we define

Ac � dxqm
c �

D

s
~ h̄�11d��2, (2)

Aprt � dxprt �
p

b
D

s
�

2p h̄
p

ntcl
. (3)

The above parametric scales, of time-independent first-
order perturbation theory (FOPT), manifest themselves
also in the time-dependent analysis. FOPT gives the fol-
lowing result for the probability Pt�n jm� to make a tran-
sition from an initial level m to some other level n,

Ç
1
h̄

µ
≠H

≠x

∂
nm

Z t

0
x�t0� exp

µ
i

�En 2 Em�t0

h̄

∂
dt0

Ç2
.

The total transition probability is p�t� �
P0

n Pt�n j m�,
where the prime implies omission of the n � m term. In
the regime V , vcl, one obtains

p�t� �
1
h̄2 nA2 3

8>><
>>:

�V2�tcl�
1
4 t4 for 0 , t ø tcl

V2 1
3 t3 for tcl ø t ø 1�V

1
2 t for 1�V ø t ø tH

,

while in the regime V . vcl, one obtains

p�t� �
1
h̄2

n

tcl

A2

V2

Ω
�1 2 cos�Vt��2, 0 , t ø tcl,
3�2, tcl ø t ø tH.

In both cases for t . tH we have recurrences, and there-
fore p�t� # p�tH�. (One should be more careful near reso-
nances: There, tH should be replaced by 2p h̄�d, where d

is the detuning.) The necessary condition for applicability
of FOPT at time t is that p�t0� ø 1 for any t0 , t, which
can be written as p��0, t�� ø 1. The necessary condition
for the applicability of the FGR picture is p��0, tcl�� ø 1.
This is the FGR condition [5] which guarantees the sepa-
ration of time scales tcl ø tprt. The FOPT break time
tprt is defined as the maximal t for which p��0, t�� , 1.
Now we can define a nonperturbative regime by the re-
quirement p��0, tcl�� . 1. It is straightforward to observe
that the nonperturbative regime is contained in the region
A . Aprt, whereµ

Aprt

A

∂
vcl , V ,

µ
A

Aprt

∂
vcl . (4)

The location of the nonperturbative regime is illustrated
in Fig. 1. For completeness of presentation we have also
indicated the subregion in V , vcl where we have first-
order response equal to zero. The condition is p��0, `�� ø
1 or, equivalently, p�tH� ø 1. This region contains the
QM adiabatic regime, including the region A , Ac, but
excluding the narrow stripes of resonances.
We have defined the location of the nonperturbative
regime, but we have not yet suggested how Eq. (1) should
be modified. Using RMT assumptions with regard to
�≠H �≠x�nm, and inspired by related studies of wave
packet dynamics [15], we expect the result

DE � �C�
p

yPR� 3 D0 , (5)

where yPR � V��dxprt�tcl�, and C is a numerical con-
stant. A detailed derivation of (5) will be presented in the
future. (The crucial step is to argue that at tprt there is a
crossover from ballistic behavior to diffusion in the sense
of [5].) For periodic driving this result should be averaged
over a period leading to DE ~ A22a with a � 1�2.

We wanted to give a numerical example that demon-
strates the nonperturbative response effect. Evidently,
the simplest is to consider a time-dependent version of
Wigner’s banded random matrix (WBRM) model,

H � E0 1 x�t�B , (6)

where E0 is an ordered diagonal matrix, and B is a banded
matrix. This model [16,17] is characterized by the parame-
ters �D, b, s, h̄� which we have defined previously. For the
numerical experiment we have assumed a rectangular band
profile such that all of the elements 0 , jn 2 mj # b
are taken from the same distribution, and outside the
band all of the elements are identically zero. The results
of the simulations are summarized in Fig. 2. It should
be realized that WBRM model Eq. (6) has a big disad-
vantage. Namely, unlike the physical examples of the
introduction, the statistical properties of the model are not
invariant for x�t� � x�t� 1 const. One may wonder why
we do not use one of the two other popular variations of
the Wigner model [10,11], e.g., H � E 1 �cosx�B1 1

�sinx�B2. The problem is that, for these models, one
obtains dxprt 	 dxcl

c 	 2p . Therefore there is no regime
where LRT fails because of quantal nonperturbative effect
[9]. (Such failure requires the generic separation of scales
dxprt ø dxcl

c .) Thus it seems that the only way to make
a RMT model x-invariant, is to keep it “perturbative” in
nature. The lack of x-invariance in the standard WBRM
model complicates the calculation of the period-averaged
DE and leads to DE ~ A22a with a changing gradually
from 1�2 to 1. The numerical analysis of Fig. 2b fits well
to a 	 3�4.

There are two types of localization effects that we had
to consider in our numerical experiments. The “WBRM
model localization” can be avoided by using amplitudes
A , b3�2�D�s� in order to guarantee that the instanta-
neous eigenstates of Eq. (6) are not localized at any time.
The “dynamical localization effect,” on the other hand,
cannot be avoided. It is associated with the periodic na-
ture of the driving. By extending standard argumentation,
one observes that the eigenstates of the (one period) Flo-
quet operator have localization length j 3 D, and that
the associated break time is t� � j 3 �2p�V�. The two
4841
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FIG. 2. The response of a quantum-mechanical system is dis-
played as a function of A and V. The evolution is determined by
the WBRM model Eq. (6). The units of energy, time, and ampli-
tude are chosen such that D � 0.5, h̄ � 1, and s � 1, respec-
tively. Upper panel: plots of DE�A2 versus V�vcl for few values
of A. For small v the plots coincide as expected from Eq. (1).
As A becomes larger the deviations from Eq. (1) become more
pronounced, and we also get a response for V . vcl. Lower
panel: plots of DE�D0 versus A�

p
b for few values of V�vcl.

The LRT result [Eq. (1)] implies DE�D0 � 1 for V�vcl , 1.
The purpose of the horizontal scaling is to demonstrate that Aprt
rather than Ac is responsible for the deviation from this LRT
expectation. Each “point” in the above plots is determined by
a simulation that involves typically 35 realizations of the evolu-
tion until we start to see saturation due to dynamical localization
effect. The typical time step is dt � 1024. In each step we ver-
ify that the normalization is preserved to an accuracy of 0.01%.
In order to eliminate finite size effects we have used a self-
expanding algorithm. Namely, additional 10b sites are added
to each edge whenever the probability in the edge sites exceeds
10215. The diffusion coefficient is determined from the fitting
dE�t�2 � const 3 tb . For subdiffusive behavior �b , 0.86�
we set DE � 0. The preparation of each point in the above
plots requires 	4 CPU days on Alpha XP1000 machine.

must be related by 2DEt� � �jD�2 leading (in the LRT
regime) to the result t� � 2p2�A�Ac�2 3 tH. In all of our
numerical experiments the diffusion has been determined
4842
for times where dynamical localization is not yet appar-
ent. Another possibility, which we have not used, is to add
a small noisy component to the driving, such as to mimic
the typical experimental situation of having dephasing time
much shorter than t�.

It is not obvious that the nonperturbative behavior that is
implied by RMT assumptions, and applies to RMT mod-
els, should apply also to Hamiltonians that possess a well
defined classical limit. On the contrary, the same consider-
ations as in [15] can be applied in order to argue that RMT
considerations are not compatible with the QCC principle.
Here we are going to explain the main idea, and define our
expectations.

Taking h̄ to be very small, it is obvious that eventually
we shall find ourselves in the regime where A ¿ Aprt. Let
us consider the dynamics during a specified time interval
0 , t0 , t. The time t is chosen to be much larger than
tcl. On the basis of QCC considerations, we should be
able to make h̄ sufficiently small such that the quantum
evolution becomes similar to the classical evolution up to
the time t. The classical analysis implies that during this
time the stochastic behavior is established. Therefore hav-
ing detailed QCC during the time t implies that the quantal
DE can be approximated by the classical result. This leads
to a contradiction with the RMT prediction Eq. (5) in the
domain V , vcl, but not in the domain V . vcl. We are
going to further explain this last point.

Denote the energy dispersion by dEqm�t� and the corre-
sponding classical result by dEcl�t�. For sufficiently small
h̄ it should be possible to make a leading order approxi-
mation dEqm�t� 
 dEcl�t� 1 h̄gg�t�, with g . 0. In the
V , vcl regime the first term in this approximation is
dominant. On the other hand, for V . vcl the first term
gives a vanishingly small result for DE. Therefore, with-
out any contradiction with QCC considerations, the second
term becomes important. Therefore we may have, in prin-
ciple, an enhanced quantal response for V . vcl.

In conclusion, we have defined a nonperturbative regime
in the �V, A� plane, where LRT cannot be trusted. We
have demonstrated an actual failure of LRT for a particular
(RMT) Hamiltonian. We believe that for generic chaotic
systems the RMT mechanism for diffusion competes with
the classical mechanism. The actual response of the system
is expected to be determined by the predominant mecha-
nism. The study of this conjecture is the theme of our
future studies.

We thank the Centro Internacional de Ciencias (Cuer-
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