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Twirling Elastica: Kinks, Viscous Drag, and Torsional Stress
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Biological filaments such as DNA or bacterial flagella are typically curved in their natural states.
To elucidate the interplay of viscous drag, twisting, and bending in the overdamped dynamics of such
filaments, we compute the steady-state torsional stress and shape of a rotating rod with a kink. Drag
deforms the rod, ultimately extending or folding it depending on the kink angle. For certain kink angles
and kink locations, both states are possible at high rotation rates. The agreement between our macro-
scopic experiments and the theory is good, with no adjustable parameters.

PACS numbers: 87.16.–b, 05.45.–a, 46.70.Hg, 47.15.Gf
The coupling of viscous stresses from fluid flow to de-
formations of elastic fibers is important in many situations,
such as paper manufacture, flexible microstructures in mi-
croelectromechanical systems devices, and the dynamics
of flexible biological filaments. The last example includes
spinning filaments, such as bacterial flagella, DNA, and su-
percoiling colonies of mutant strains of Bacillus subtilis.
The rotary motors of E. coli rotate the flagellar bundle up
to 9000 rpm [1]. In DNA transcription, if rotational motion
of the RNA polymerase is blocked, then the DNA twirls
at typical rates of 300–600 rpm as it is pulled through the
enzyme [2]. Finally, the mutant B. subtilis cells fail to
separate as they divide, and form long fibers which rotate
as they grow [3].

Although these filaments are often modeled as intrinsi-
cally straight elastic rods, natural bends can have signifi-
cant effects. For example, natural curvature in bacterial
flagella is crucial for generating thrust; mutants with
straight flagella cannot swim [4]. Proteins can bind to
DNA and impose sharp, large-angle bends [5], which
can greatly enhance the torsional stress due to viscous
drag during transcription. Similar torsional stresses from
intrinsic bends have been estimated to be large enough to
affect gene activity or DNA structure even in the absence
of external anchoring [6]. As we shall recall below, kinks
generically trap torsional stress in specific regions of a
rotating filament. Finally, there is evidence that intrinsic
bends may arise at the hairpin loops during the formation
of supercoiled colonies of B. subtilis [7].

To gain intuition on how sharp intrinsic bends affect
shape and twist in the overdamped (inertialess) regime of
cellular motions, we study a bent elastic rod rotating in
an extremely viscous fluid, and ask, how do the shape and
torsional stress depend on the twirling rate? For simplic-
ity we disregard Brownian effects. We first describe how
rotation affects the shape, then we formulate and solve the
problem using slender-body theory, and finally we com-
pare our predictions with experimental results.

The shape and stresses of a rotating elastic rod in a
viscous fluid depend on its stress-free state. At low rotation
rates, a naturally straight rod twirled about its long axis
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(which is along the z axis, say) remains straight, but twists
and spins about z. At higher rates this state is unstable,
the centerline writhes and slowly rotates about z, and each
element of the rod rapidly spins about the local tangent.
This motion is a hybrid of crankshaft and speedometer-
cable motion [8].

A naturally bent rod rotating in a viscous fluid behaves
very differently. Consider a rod made of two straight legs
joined at a right angle. Align one leg along the vertical
�z� axis and twirl it with velocity vẑ. Unlike the naturally
straight rod, the centerline of this rod will distort from its
unstressed state for any rotation rate, since the free leg
experiences translational drag. This translational drag will
wrap the free leg around z (insets, Figs. 1 and 2), and twist
the held leg. In comparison to the naturally straight rod, the
torsional stress in the held leg is very large, for a given v.

Viscous stresses tend to straighten out a rod with a right-
angle kink (Fig. 1). To see why, it is convenient to work
in the frame of the twirling rod, with an unperturbed fluid
velocity v � vẑ 3 r, where r � r�s, t� is the position of
the rod at time t, and s is arclength. Suppose the free leg
aligns parallel to the x axis for v � 0; i.e., the “L” lies
in the z-x plane. For small v (“small” will be defined
below), translational drag deflects the free leg in the y
direction, which causes the held leg to bend away from
the rotation axis in the y direction. Thus the held leg lies
in a region where the flow is in the 2x direction; this flow
deflects the held leg, rotating the joint to extend the rod.
For small v, the sense of the joint rotation is independent
of the exterior kink angle, a. As v increases, rods with
small to moderate a (L-shaped) will extend, whereas rods
with large a (V-shaped) will fold.

These arguments suggest there should be a critical angle
dividing the ultimate (large v) extending and folding
behaviors, but further reflection reveals that both states are
possible at large rotation rates. Imagine that a rod with a
right-angle kink is bent by an external force that brings
the two legs together so the rod looks like a “U” with a
sharp kink. Sufficient rotational flow will cause folding
for the same reason the V-shaped rod eventually folds.
At high rotation rates, the viscous stresses will be large
© 2000 The American Physical Society 4827
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FIG. 1. Time sequence, from left to right, showing the steady-
state shape of a naturally L-shaped rod twirling in glycerol. A
motor (above, not shown) rotates the rod at 200 rpm. Gravity is
along z, and x points into the page. The container is a Plexiglas
box 31 cm 3 31 cm wide and 28 cm tall. Inset is the view from
below, in which the rod rotation is counterclockwise.

enough to hold the rod in this folded state even when the
external force is released. Thus, we expect bistability at
large rotation rates: Figs. 1 and 2 show the same rod and
same rotation rate with different initial conditions. These
steady-state shapes are stable against small-amplitude
perturbations, but sufficiently large perturbations lead to a
transition from extended to folded and vice versa.

FIG. 2. Bistability at sufficiently high v. The same rod as in
Fig. 1, spinning at 200 rpm, but a different state, obtained by
bending the rod upwards into a V-shape at the onset of twirling.
Inset: view from below.
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We now turn to the mathematical analysis. For a slen-
der rod (radius a much less than length L), deformations
can be described by the configuration of an orthonormal
material frame �ê1, ê2, ê3� embedded in the rod [9], with
ê3 � ≠r�≠s � rs. The rates of rotation of this frame with
respect to arclength and time define the angular strain V
and velocity v:

�êi�s � V 3 êi , �êi�t � v 3 êi , (1)

with i � 1 3. Associated with these strains are inter-
nal elastic stresses, which give rise to a force F�s� and
a moment M�s� acting on the cross section at s. For
an isotropic linearly elastic rod, the constitutive relation
is M � Ars 3 rss 1 Crsrs ? V, where A is the bending
stiffness and C is the twisting stiffness [9]. Note M �
AV when G � C�A � 1. In the (overdamped) limit of
zero Reynolds number Re, the elastic force and moment
per unit length balance exactly with the viscous drag force
and moment per unit length:

Fs 2 f � 0 , (2)

Ms 1 rs 3 F 2 m � 0 . (3)

From slender-body hydrodynamics [10], the leading-order
drag force and moment per unit length are

f � zkrsrs ? rt 1 z��rt 2 rsrs ? rt� , (4)

m � zrrsrs ? v , (5)

where z� � 2zk � 4ph��log�L�2a� 1 c	 (h is viscos-
ity, c is a constant of order unity) and zr � 4pha2 [10].
Although the slender-body approximation is invalid near
the kink where the curvature diverges, it does have the cor-
rect (linear) v dependence for the translational drag per
unit length, and will therefore give the correct (nonlinear)
scaling of the shape and torsional stress with v.

As emphasized in Ref. [6], kinks block speedometer-
cable motion, since sharp curvature implies a large elastic
energy cost for rotation about the local tangent. Thus we
consider pure crankshaft motion of the centerline about the
axis of rotation. Furthermore, the torsional stress Crs ? V
due to rotational drag of the held leg is O �zrvL�, much
smaller than the torsional stress due to translational drag
of the free leg, which for small v is O �z�vL3�. As we
shall verify below, the twist due to translation dominates
that due to rotation even at large v, as long as L�a is suf-
ficiently large. Hence we set zr � 0 for further simplicity.
Finally, we take the kink angle a to be clamped at a value
independent of v.

We desire the steady-state solution to (1)–(5) for rt �
v 3 r, with v � vẑ; as our experiments confirm there
is no oscillatory behavior as expected at the low Reynolds
number. Fifteen boundary conditions at the ends are re-
quired for the fifteen unknowns: r, rs, ê1 �ê2 � rs 3 ê1�,
M, and F. Taking the x and y axes to rotate about z with
rate v, we demand r�0� � 0, rs�0� � ẑ, and ê1�0� � x̂
at the held end. The free end experiences no force
and moment: F�L� � 0 and M�L� � 0. Finally, fifteen
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conditions must be enforced at the position of the joint,
s � L1. These conditions are the continuity of position,
force, and moment, and rs�L1

1 � � rs�L2
1 � cosa 1 ê1 3

�L2
1 � sina, and ê1�L1

1 � � 2rs�L2
1 � sina 1 ê1�L2

1 � cosa.
The twist is discontinuous across the kink, since the
twisting moment on one side can balance with a bending
moment on the other; kinks trap torsional stress.

We measure length in units of L, time in units of the
bending relaxation time z�L4�A, force in units of A�L2,
and moment in units of A�L. The shape of the rod is
then controlled by the dimensionless rotation rate x �
z�vL4�A (cf. [11]) and the geometrical quantities a and
L1�L. In our macroscopic experiments of Figs. 1
and 2, the rod is a steel compression spring wrapped
in Teflon™ tape, immersed in glycerol, with h �
20.0 erg sec�cm3, L � 29 cm, a � 0.16 cm, a � 87±,
and A � C � 2.2 3 105 dyne cm2. For our motor speeds
of 5–500 rpm, x ranges from 55–5500.

For small x the shape and stress can be obtained to lin-
ear order in x . For the linear calculation only, it is con-
venient to write (1)–(5) in terms of r and set z� � zk; in
fact, zk will not enter the linear calculation. The consti-
tutive relation, the moment balance equation (3) (which
now has m � 0), and rs ? rs � 1 imply F � 2rsss 1

GVrs 3 rss 1 Lrs, where V � rs ? V, and L is the un-
known part of rs ? F. Force balance is thus

x ẑ 3 r � 2rssss 1 GVrs 3 rsss 1 �Lrs�s . (6)

Since zr � 0, the tangential moment balance (3) implies
Vs � 0, i.e., constant twist in each leg.

For simplicity, consider a right-angle kink, a � p�2.
If x � 0, then V � L � 0, and the rod is undeformed.
To first order in x , the deformation of both legs of the rod
is evidently along the y direction; therefore,

r�s� �
Ω

sẑ 1 y�s�ŷ 0 # s # L1 ,
L1ẑ 1 �s 2 L1�x̂ 1 y�s�ŷ L1 # s # 1 .

(7)

Force balance implies that Ls � 0 in both legs, yssss �
0 for 0 # s # L1, and x�s 2 L1� � 2yssss for L1 #

s # 1. The boundary conditions at the ends of the rod
are y�0� � ys�0� � 0, and yss�1� � ysss�1� � V�1� �
L�1� � 0. Therefore, L � V � 0 for L1 , s # 1; note
that the twist for 0 # s , L1 is not zero: the kink has
trapped the twist. Continuity requires y�L2

1 � � y�L1
1 �;

also,

ê2
1 � x̂ 1 GVL1ŷ , ê1

1 � 2ẑ 2 y1
s ŷ ,

ê2
2 � ŷ 2 GVL1x̂ , and ê1

2 � ŷ 2 y1
s x̂ 1 y2

s ẑ ,

ê2
3 � ẑ 1 y2

s ŷ , ê1
3 � 2x̂ 1 y1

s ŷ , (8)

where ê6
i � êi�L6

1 �, etc. Using (8), the condition on the
jump in the material frame becomes GVL1 � y1

s , conti-
nuity of force becomes y2

sss � y1
sss and L2 � 0, and con-

tinuity of moment becomes y2
ss � 0 and GV � y1

ss. Thus
we find a (dimensional) twist stress of CV � 2z�v�L 2

L1�3�3 in the held leg. The (dimensional) shape of the rod
is given by

y�s� � 2
z�v

12A
s2�3L1 2 s� �L1 2 L�2, s # L1 ,

(9)

and
y�s� �
z�v
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To solve for the shape and stress when x is not small, we
must use numerical methods. However, we can obtain the
x dependence of the various quantities for x ¿ 1 using
a simple argument. Since the rod is mostly aligned along
the z axis at high twirling rates (in both the folding and
extending cases), r � ẑs 1 r� with jr�j ! 0 as x ! 0.
Ignoring the terms involving L, and all numerical prefac-
tors, (6) reduces to

ẑ 3 r� � 2
1
x

r�ssss 1
V

x
ẑ 3 r�sss 1 . . . . (11)

The curvature and jr�j are very small except in a bound-
ary layer near the kink at s � L1; rescaling s 2 L1 �
�s 2 L1��x1�4, we find that the translational drag, bend-
ing, and twisting forces per length all balance for large
x if V ~ x1�4. On the other hand, we can balance the
moment CV against the approximate translational drag
R
ds �z�vjr�j� jr�j to find jr�j ~ x21�4. This change in

shape with x implies that the effective rotational friction
coefficient zr ,eff � CV�v decreases as x23�4 for large x .

Equations (1)–(5) are in standard form for the relaxation
method [12]. The interval 0 # s # 1 is replaced by a fine
mesh, with two mesh points corresponding to s � 1�26.
There is no need to introduce the intermediate tension vari-
able L, which enforces fixed length, since (1) and the
boundary condition on rs at s � 0 imply rs ? rs � 1. For
simplicity, we choose G � 1 and zk � z��2.

Figure 3 shows the total extension and torsional stress
as functions of the twirling rate for a rod with a � 87±

and L1�L � 2�3 (as in Figs. 1 and 2). As x increases, the
initially L-shaped rod distorts and extends. At sufficiently
large x , a new branch of solutions appears which corre-
sponds to folding. The situation is reminiscent of an imper-
fect bifurcation. To make the comparison with experiment,
we have included a net downward force per unit length due
4829
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FIG. 3. (a) Theoretical predictions and experimental results for
relative z displacement of rod free end �s � L� versus dimen-
sionless rotation rate x. (b) Theoretical prediction for dimen-
sionless twist in the held leg versus x. Note the agreement with
the scaling arguments for V. a � 87±; L1�L �

2
3 .

to gravity (the filament’s linear density is 0.167 g�cm and
glycerol has a density around r � 1.3 g�cm3). There is
no fitting in Fig. 3. The agreement between theory and
experiment is excellent. We expect the slender-body hy-
drodynamics approximations to work well since the cur-
vature is gentle away from the small region near the kink
(Figs. 1 and 2), and the two legs of the rod are sepa-
rated by many rod radii even in the folded state (inset
of Fig. 2). The Reynolds number Re � vrmaxar�h is
about 0.2 for v around 500 rpm (rmax is the maximum
transverse displacement of the rod, vrmax sets the velocity
scale, and the rod radius a sets the length scale of the dis-
turbance flow). Figure 3 also gives the dependence of the
torsional stress on x , confirming our scaling arguments
that V ~ x for x ø 1 and V ~ x1�4 for x ¿ 1. We
can now assess our neglect of zr at large x: demand-
ing �zrvL���

R
ds z�vjr�j

2� ø 1 amounts to requiring
x3�4�a�L�2 ø 1, which is easily fulfilled for L�a � 103.
Note that (within the slender-body hydrodynamics approxi-
mation) the twist has the x1�4 dependence for both the
folding and extending branches.

Figure 4 displays the “phase diagram” for a twirling
bent rod. Rods with large kink angles (V-shaped) fold
up as x increases from zero, whereas rods with small kink
angles extend. For intermediate kink angles, both states
are possible at high x; there is no critical angle dividing
extending and folding. This behavior is generic as long as
L1�L is not too close to 0 or 1.

In conclusion, we have shown how kinks affect the de-
formation and torsional stress of a twirling elastic rod in
a viscous fluid. Despite the linearity of the elastic con-
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FIG. 4. Phase diagram for twirling a rod with a kink at L1 �
2
3 L (no gravity). For x * 1500 and a near p�2, the rod is
bistable, as indicated by the dashed lines. Here, z � 1 is fully
extended and z �

1
3 is completely folded.

stitutive relations (which derive from Hooke’s law) and
the equations for viscous flow (Stokes equations), we find
nonlinear dependences on rotation rate at high rates due to
the change in shape. Bacterial flagella, DNA, and fibers of
B. subtilis are sufficiently flexible that typical rotation rates
can cause the extending and folding studied here, which
could be revealed using micromanipulation. An important
extension of our work which would be relevant to DNA
would be to carry out Brownian dynamics simulations of
a rotating flexible rod with many kinks, as envisioned in
Ref. [6].
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