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Nonequilibrium Field Theory Description of the Bose-Einstein Condensate
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We study the detailed out-of-equilibrium time evolution of a homogeneous Bose-Einstein conden-
sate (BEC). We consider a nonrelativistic quantum theory for a self-interacting complex scalar field,
immersed in a thermal bath, as an effective microscopic model for the description of the BEC. The
interaction between fluctuations proves to be crucial in the mechanism of instability generation. We
show the existence of two regimes in k space, with a crossover for k2�2m � 2ljw0j

2, where l is the
coupling constant and jw0j

2 is the condensate density. We deduce and solve a set of coupled equations
that completely determines the nonequilibrium dynamics of the condensate density.

PACS numbers: 03.75.Fi, 05.30.Jp, 11.10.Wx
The experimental verification of the phenomenon of
Bose-Einstein condensation in weakly interacting gases
has boosted a large number of theoretical investigations on
the dynamics of weakly interacting dilute gas systems [for
a recent review, see, e.g., Ref. [1], and references therein].
Current experiments and planned ones make it possible
to probe different aspects of the Bose-Einstein condensate
formation, with great control over interactions, trapping
potentials, etc. Nevertheless, a basic problem not yet fully
understood is the following: given an initial state, how will
the condensate evolve with time? Of special note , the time
scales for the condensate formation and its final size are
important quantities involved in recent experiments with
dilute atomic gases [2].

On the theoretical side, however, only restricted progress
has been achieved concerning the problems above. Previ-
ous studies by Stoof [3] were able to give a qualitative idea
of the various time scales involved during the condensate
formation. In fact, they were the first attempts to analyze
the problem from a microscopic point of view, by using
the Schwinger-Keldysh closed time-path formalism (for re-
views, see, for instance, Refs. [4,5]) in the quantum field
theory description of Bose-Einstein condensation. Regard-
ing the condensate growth problem, Gardiner et al. [6]
have used a quantum kinetic theory to construct a master
0031-9007�00�85(3)�479(4)$15.00
equation for a density operator describing the state of the
condensate, which is equivalent to a Boltzmann equation
describing a quasiequilibrium growth of the condensate.

In this work we will study the quantum field time evo-
lution of an interacting homogeneous condensate. Al-
though nonhomogeneity is inherent to current experiments
on Bose-Einstein condensation of atomic gases in trapping
potentials, we believe that a full understanding of the time
evolution of even the simpler case of a homogeneous gas
is still lacking. Besides, as pointed out by Stoof in [3], the
simplest formulations based on kinetic theory do not al-
low for the observation of a macroscopic occupation of the
one-particle ground state, and the question of the instabil-
ity of the Bose gas system in the homogeneous case is a
nontrivial one. This makes its study an interesting prob-
lem, which may shed some light on the analysis of the
systems under experimental investigation.

We consider the simplest model for a nonrelativistic
complex Bose field, with a hard-core interaction poten-
tial, whose Lagrangian density is given by (throughout this
work we use units such that h̄ � 1)

L � f�

µ
i

d
dt

1
1

2m
=2

∂
f 1 mf�f 2 l�f�f�2,

(1)
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where the complex scalar field f�x, t� represents complex
spinless bosons of mass m, and l is the coupling constant,
related to the s-wave scattering length a by l � 4pa�m.
In (1) we have also explicitly introduced a chemical po-
tential m that produces a constant total density of par-
ticles �f�f� � n. We also assume that the system is
coupled to a heat bath environment with inverse tempera-
ture b � 1�kBT .

We may now perform the standard decomposition [7] of
the fields (f, f�) into a condensate (uniform) part (w0, w�

0)
and a fluctuation (nonuniform) part (w, w�) that describes
the atoms outside the condensate, as f�x, t� � w0�t� 1

w�x, t� and f��x, t� � w
�
0�t� 1 w��x, t�, where we have

assumed a homogeneous condensate. Note that we take
at first w0�t� as an arbitrary function of time that will be
determined by the dynamics of the system.

Substituting the fields above in (1), we can readily obtain
the Bogoliubov spectrum for quasiparticles [8]. In particu-
lar, the quadratic part of the Lagrangian for the fluctuation
fields is the Bogoliubov approximation for quasiparticles.
However, this approximation has a flaw: there is no in-
teraction between the fluctuations, which is only reason-
able at temperatures well below the critical temperature
for the condensate formation. Our aim in this work is the
study of the condensate evolution and, therefore, we must
go beyond the Bogoliubov approximation. The simplest
extension is to implement a mean-field approximation in
the interactions between the fluctuation field. In this way,
as we show below, one can make clear the appearance
of instability modes towards the condensation formation
once the interactions between fluctuations are taken into
account. With the decomposition above, the interaction
term for fluctuations in the Lagrangian becomes l�w�w�2.
The mean-field approximation amounts to the following:

l�w�w�2 � 4l�w�w�w�w 1 �l�w�w�2 2 4l�w�w�w�w� ,
(2)

where the first term in the right-hand side is taken as part
of the quadratic Lagrangian for fluctuations, and the term
inside the square brackets is taken as part of the interaction
Lagrangian.

From the decomposition of the fields and (2), the
quadratic part of the Lagrangian density for the fluctua-
tions, L0�w, w��, may be written as

L0�w, w�� � w�

∑
i

d
dt

1
1

2m
=2

∏
w 1 w��2lw2

0�w�

1 w�2lw�2
0 �w . (3)

Here, we have used the fact that, under the field de-
composition in the condensate and out of the conden-
sate modes, the density constraint then becomes �f�f� �
jw0j

2 1 �w�w� � n. Additionally, assuming that at the
initial time the system is mostly composed of particles out-
side the condensate, �f�f� 	 �w�w� (at t � 0), simple
relations involving the generating functional for the cor-
relation functions (see, for instance, the last section of
480
Chap. 2 in [9]) allow us to write the total number den-
sity n of particles in terms of the chemical potential m,
valid in the mean-field approximation for the potential, as
m � 4ln. Note that this is just the expression obtained
also in the Hartree-Popov approximation [10], which turns
out to satisfy the Hugenholtz-Pines relation [11] that would
be obtained in the equilibrium problem. These considera-
tions lead to the quadratic Lagrangian for the fluctuations
shown above.

The scenario we have in mind is that for time t , 0 the
initial state is in equilibrium at a temperature Ti ¿ Tc.
At t � 0 the system is then abruptly quenched to a much
lower temperature Tf ø Tc. Tf is the temperature of the
thermal bath in which the system is immersed and, of
course, it will be the equilibrium temperature which the
system will reach asymptotically. This kind of quench is
easily attained in the experiments of Bose-Einstein con-
densation of atomic gases, where the typical relaxation
time scales are long enough (around �0.1 s, depending on
the temperature [12]) to allow for a fast drop in the tem-
perature of the system that evolves afterwards out of equi-
librium. With this choice of initial state, it is reasonable
to approximate the dynamics of the buildup of the con-
densate state, which at the initial time is ncond�t � 0� �
jw0�t � 0�j2 
 0, and the depletion of the excited states
[which at t � 0 it is given by n 
 nexc�t � 0� � �w�w�]
as essentially a two-level problem. It is clear that this
approximation breaks down for temperatures close to the
critical temperature, where the detailed treatment would
require a thorough study of the dynamics among the many
levels of excited states. In the above approximation, the
condensate builds up subject to the density constraint re-
lation, which may be expressed in terms of the aver-
ages of the real and the imaginary parts of w and w�

(w � w1 1 iw2 and w� � w1 2 iw2, respectively). Spa-
tial translational invariance yields

jw0�t�j2 1 nexc�t� � n ,

nexc�t� � �w1�t�w1�t�� 1 �w2�t�w2�t�� . (4)

The field averages above can be expressed in terms of the
Green’s functions for w1 and w2 as (j � 1, 2)

�wj�t�wj�t�� �
Z d3k

�2p�3

h
2iG.

jj�k, t, t�
i

, (5)

where G.
jj�k, t, t� is defined from the Green’s functions

for the fields in the closed-time path [3,5] (in momentum
space)

G11
jj �k, t, t0� � G.

jj�k, t, t0�u�t 2 t0�
1 G,

jj�k, t, t0�u�t0 2 t� ,

G22
jj �k, t, t0� � G.

jj�k, t, t0�u�t0 2 t�
1 G,

jj�k, t, t0�u�t 2 t0� ,

G12
jj �k, t, t0� � 2G,

jj�k, t, t0� ,

G21
jj �k, t, t0� � 2G.

jj�k, t, t0� . (6)
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The functions G. and G, satisfy the property
G,

jj�k, t, t0� � G.
jj�k, t 2 ib, t0�, which is recognized as

the periodicity condition in imaginary time [Kubo-Martin-
Schwinger (KMS) condition]. b here is the inverse of
the temperature of the thermal bath and appears here as
a consequence of the boundary conditions arising from
the construction of the complex time path. G. and G,

are constructed from the homogeneous solutions to the
operator of quadratic fluctuation modes, which, using
Eq. (3) expressed in terms of w1 and w2, are given by (in
momentum space)

dx2�k, t�
dt

1

µ
k2

2m
1 2ljw0j

2

∂
x1�k, t� � 0 ,

dx1�k, t�
dt

2

µ
k2

2m
2 2ljw0j

2

∂
x2�k, t� � 0 . (7)

The boundary conditions for the solutions of the
equations above are such that, for t , 0, jw0�t�j2 � 0,
x1�k, t� � cos�´kt�, and x2�k, t� � 2 sin�´kt�, where
´k � k2��2m�. In terms of these fluctuations modes, the
Green’s functions are expressed as

G.
jj�k, t, t0� �

i
2�1 2 e2b´k�
3 �xj�k, t�x�

j �k, t0�
1 e2b´kx�

j �k, t�xj�k, t0�� (8)

and G,
jj�k, t, t0� � G.

jj�k, t0, t�.
By decoupling the set of equations in (7), we can read-

ily identify that those modes with �k2�2m� , 2ljw0j
2 are

unstable and drive the excited particles towards condensa-
tion. Note also that not all the excited particles condense,
since there will always be a fraction (which depends on
various parameters for a particular system and on the tem-
perature of the thermal bath) of excited modes, with high
enough frequency, that remains stable. This will be clear
from our numerical results shown later.

Using Eqs. (7) and (8) and the boundary conditions on
the Green’s functions, Eq. (6), together with the initial
condition on the density (at t � 0, as defined before), one
can then show that nexc�t� can be expressed as (by sub-
tracting the zero point divergent contribution)

nexc�t� �

µ
b

bc

∂3�2Z d3k
�2p�3

3 �jx1�k, t�j2 1 jx2�k, t�j2�nk�b� , (9)

where nk�b� � �ebek 2 1�21, and bc is the inverse of the
equilibrium critical temperature, defined in terms of the to-
tal gas density n [13]. It should also be noted that in our out
of equilibrium approach there are no infrared divergences
since the finite time is a natural regulator. However, for the
equilibrium t ! `, the critical temperature will be modi-
fied by the interactions as pointed out in Ref. [14].
The expression above can also be obtained directly in
terms of the Green’s functions for the complex fields
w, w�:

�w�t�w��t�� �
Z d3k

�2p�3 �2iG.
ww� �k, t, t�� , (10)

�w��t�w�t�� �
Z d3k

�2p�3 �2iG.
w�w�k, t, t�� . (11)

In terms of (10) and (11), we have �w1�t�w1�t�� 1

�w2�t�w2�t�� � ��w�t�w��t�� 1 �w��t�w�t����2, and the
KMS condition can be expressed, in this case, as G.

ww��k,
t 2 ib, t0� � �G.

w�w�k, t, t0���, or G.
w�w�k, t 2 ib, t0� �

�G.
ww��k, t, t0���.
Equation (9) is the first order term in the finite tem-

perature quantum many-body perturbation expansion for
�w2

j �. Higher-order corrections for the equal-time two-
point field averages can be expressed in terms of the coin-
cidence limit of the (causal) two-point Green’s functions
Gww� and Gw�w , which satisfy the Dyson equations (the
indices stand for w and w�):

Gij � G0
ij 1 G0

ikSklGlj , (12)

where Sij is the (matrix) self-energy, and G0
ij is the

zeroth-order noninteracting Green’s function, satisfying
the equation (in momentum space)∑

6i
d
dt

2 ´k

∏
G0

ww��w�w��k, t, t0� � d�t 2 t� . (13)

One of the advantages of expressing the Green’s functions
in terms of the solutions of (7) is the possibility of obtain-
ing, in an unambiguous way, all higher-order corrections
to the two-point and many-point functions [15].

By using Eq. (9), we can rewrite the constraint on the
density as

jw0�t�j2 �
�b�bc�3�2

2p2

Z p
16pajw0�t�j2

0
dk k2

3 �1 2 �jx1�k, t�j2 1 jx2�k, t�j2��nk�b� ,
(14)

that reproduces the result obtained by Stoof [3] for the limit
t ! `. Equations (7) and (14) form an integrodifferential
system that may be solved for w0�t� numerically, given
the initial conditions for w0�t�, x1��k, t�, and x2� �k, t� men-
tioned before. Indeed, this system of equations determines
completely the time evolution of the condensate density as
a function of the temperature and of the total density of the
gas. Explicit results for different temperatures are shown
in Fig. 1. It is important to point out at this stage that the
evolution of the condensate is completely driven by the in-
teractions between the microscopic fluctuations of the field
around the condensate.

Throughout this Letter, we have developed an out-
of-equilibrium nonperturbative quantum field theory
description of the condensation process of an interacting
481
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FIG. 1. Condensate density as a function of time for na3 �
0.01 and T1�Tc � 0.06, T2�Tc � 0.08, and T3�Tc � 0.1. Here,
t  �h̄�ma2�t is a dimensionless time and r0  a3jw0j

2 is a
dimensionless density.

homogeneous Bose-Einstein gas quenched below the
critical temperature. In summary, this approach yielded
the following main results: (i) The interaction between
fluctuations proved to be crucial in the mechanism of
instability generation; without it, there is simply no
macroscopic condensate at all. (ii) There are essentially
two regimes in the k space: for �k2�2m� ø 2ljw2

0 j we
have unstable modes that decay exponentially, while for
�k2�2m� ¿ 2ljw2

0 j we have stable modes that oscillate,
with a crossover for �k2�2m� � 2ljw2

0 j. (iii) Equa-
tions (7) and (14) come from a microscopic model for
the weak-interaction gas, and determine completely the
dynamics of the condensate. In fact, they are nonperturba-
tive and certainly implement a resummation of the ladder
Feynman diagrams mentioned by Stoof in [3]. Indeed, the
highly nonequilibrium character of this description should
complement the usual approach via Boltzmann equation.

Although we focused this Letter on the instability pro-
cess that generates the condensate (i.e., the short time
behavior), for t ! ` our results confirm the behavior
predicted in Ref. [3] for this limit. However, the equilib-
rium (t ! `) values of the condensate fraction are lower
than the experimental results [12] and the calculations of
Dalfovo et al. [1]. This may be due to our approxima-
tion of neglecting incoherent collisional processes, which
is a valid approximation in an infinite homogeneous gas
at very low temperatures and densities, but otherwise may
give an important contribution. We expect that the self-
consistent inclusion of pair terms should account for most
of these contributions. We will report on these improve-
482
ments of our mean-field approximation in a future pub-
lication [15].

In spite of the absence of nonhomogeneity effects, we
hope that the approach developed here may be useful in
the analysis of transients in realistic Bose-Einstein con-
densation experiments with atomic gases. Moreover, with
a suitable generalization of the formalism presented above,
we could be able to develop a theoretical description of the
dynamical aspects of a recently proposed experiment [16]
(currently in progress), regarding the Bose-Einstein con-
densation in a weakly interacting photon gas in a nonlinear
Fabry-Perot cavity [17].
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