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Negative Differential Resistance in Nanotube Devices
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Carbon nanotube junctions are predicted to exhibit negative differential resistance, with very high
peak-to-valley current ratios even at room temperature. We treat both nanotube p-n junctions and un-
doped metal-nanotube-metal junctions, calculating quantum transport through the self-consistent potential
within a tight-binding approximation. The undoped junctions in particular may be suitable for device
integration.

PACS numbers: 73.61.Wp, 73.30.+y, 73.40.Ns, 85.30.Vw
The scaling of semiconductor devices to ever-smaller
sizes is rapidly approaching fundamental limits, spurring
the exploration of new materials. Carbon nanotubes (NTs)
have particular appeal due to their small size and unique
mechanical and electronic properties; and some NT de-
vices have already been reported [1].

Recent theoretical work on NT devices has focused on
simple operations such as rectification [2–4], based on
thermal excitation of carriers over a potential barrier. How-
ever, in NT devices tunneling through the barrier can actu-
ally dominate the transport [2,5]. Such tunneling currents
can lead to negative differential resistance (NDR), with a
wide range of potential device applications [6,7].

Here we show that NT junctions are ideally suited to
function as nanoscale NDR device elements. We consider
two very different devices — a simple p-n junction (an
Esaki diode) and an entirely new device structure based
on metal contacts to an undoped NT. The latter device
relies on the nanoscale lateral size of nanotubes and has no
analog in bulk devices, illustrating the exciting possibilities
that nanotubes present.

In both cases, the direct gap and long tunneling length
of the NT contribute to a high peak current, while the
strong carbon bonding and small device size reduce the
likelihood of any defect levels in the band gap contributing
to excess valley current. Thus the predicted peak�valley
current ratios exceed by orders of magnitude those seen in
existing devices.

Nanotube p-n junctions have been studied before
[2,4,8], although their potential as NDR devices has not
been recognized. These simple devices provide an ideal
testing ground for general ideas about device operation.
For technological applications, however, one would prefer
a device that does not require doping and that can be inte-
grated into a multilevel architecture. The metal-NT-metal
structure considered here has precisely these desirable
attributes.

We first consider a p-n junction made with a semicon-
ducting single-wall NT. Specifically, we treat a (17, 0)
zigzag NT with a radius of 0.66 nm. (See Ref. [1] for
notation and a general description of the NT atomic struc-
ture.) Our qualitative results also apply to other semicon-
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ducting NTs. We use a tight-binding Hamiltonian with one
p orbital per carbon atom and a nearest-neighbor matrix
element of 2.5 eV [9], giving a direct band gap of 0.55 eV.
We consider NT junctions both in vacuum and embedded
in a dielectric material (e � 3.9).

Doping of NTs could be accomplished by insertion of
atoms inside the tubes [10] or by substitution into the lat-
tice [11], and we have considered both methods. We model
dopants inside the tube by a line of charge on the tube axis,
either positive for n doping or negative for p. (Replacing
the line with discrete ions has negligible effect.) A reason-
able packing density corresponds to highly degenerate dop-
ing, with an atomic doping fraction of about 0.01, and we
use this value throughout our calculations. Substitutional
doping can be modeled (within a sort of virtual-crystal ap-
proximation) by a uniform cylinder of charge on the tube.
I-V curves calculated with these two models agree within
1%–2% for all applied voltages.

We calculate the current using the method of Ref. [12].
The NT is divided into two semi-infinite “leads” and a
“scattering region” 13.3 nm in length. Within the scatter-
ing region we use the full self-consistent potential U�z�,
including applied bias and free-carrier screening. The po-
tentials in the leads are taken as constant, and equal to the
potentials at the boundaries of the scattering region; and
the scattering region is taken long enough to assure the ac-
curacy of this approximation.

To obtain U�z�, we self-consistently calculate the charge
and potential for a periodically repeated cell of 26.6 nm,
consisting of p and n regions of equal size. The local
density of states on each atomic site is obtained by direct
diagonalization of the Hamiltonian. The charge on each
site is given by integration of the product of the local
density of states and the Fermi function.

This standard method is directly applicable only in equi-
librium, and must be adapted for the presence of an applied
voltage. In the limit of large junction resistance (low cur-
rent), the p and n regions are each in internal equilibrium,
but with Fermi levels that differ by the applied voltage. We
therefore calculate the charge using separate Fermi func-
tions for the two regions. (There is a region near the junc-
tion where the Fermi level is undefined, but in the voltage
© 2000 The American Physical Society 4767
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range of interest, this region is fully depleted and con-
tributes negligible free charge regardless of which Fermi
level is used.) The accuracy of this approach is discussed
further below.

For a given charge s�z� (including both electronic and
ionic contributions), the electrostatic potential is U�z� �
�R�4pe�

R
s�z0�G�z 2 z0� dz0, where G�z 2 z0� is the

electrostatic kernel for a cylinder [13] and R is the NT
radius. [For a tube embedded in a dielectric (e fi 1),
the formula neglects the presence of a hole in the dielec-
tric. A more accurate calculation in the context of the
metal-NT-metal device is presented below.] In our numeri-
cal procedure, we start from a charge s�z� and obtain
U�z�; the diagonal elements of the Hamiltonian are then
shifted by 2eU�z�, the electronic charge is recalculated,
and the procedure is iterated to self-consistency.

The tight-binding formalism gives only the total charge
associated with a site. To calculate the potential, we must
assume a particular spatial distribution of the site charge.
In our calculation the charge associated with a “ring” of
sites is distributed uniformly over a length j of the NT
cylinder. To test the sensitivity of the results to the spa-
tial distribution, we vary j from 0.05 to 0.5 nm, which
includes all physically reasonable values. Over this large
range the current varies less than 5%. We expect that the
effect of varying the radial extent of the charge or lifting
the approximation of cylindrical symmetry would be simi-
larly minor.

The Landauer-Büttiker formula [12] gives current

I �
4e
h

Z
P�E� �F�E 2 eV�2� 2 F�E 1 eV�2�� dE .

(1)

Here P�E� is the electron transmission probability across
the scattering region at energy E, V is the applied volt-
age, and F�E� the Fermi function. We keep only the first
valence and conduction bands in our calculation because
contributions from other bands are negligible here.

Figure 1(a) shows the electrostatic potential energy for a
junction in vacuum at zero bias. The potential variation is
quite large and sharp: the potential step is 1.08 eV (almost
twice the band gap, due to the highly degenerate doping)
and is largely localized to a region of less than 2 nm.

Figure 2 shows the calculated I-V curve for this device
at room temperature. For voltages from 0.25 to 0.6 V, the
current decreases with increasing voltage. Thus the device
exhibits NDR, with an “average” value of 255 kV over
this range. Moreover, the peak-to-valley current ratio is
very high, of order 104. The peak current is large because
the NT has a direct gap and the valence and conduction
bands have the same rotational symmetry (analogous to
having the same transverse wave vector), allowing efficient
direct tunneling. The tunneling process does not require
defects, phonons, or other scattering mechanisms.

Above 0.6 eV, the only current is from thermionic emis-
sion over the potential barrier. This gives an extremely low
4768
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FIG. 1. Local valence and conduction band edges from the
calculated self-consistent potential for (a) V � 0, (b) V � 0.1,
(c) V � 0.25, and (d) V � 0.6 V. Dotted lines are the Fermi
levels. Arrows indicate the direction of electron flow. In (a), the
electrostatic shifts of the diagonal elements of the Hamiltonian
are shown as dots.

valley current at room temperature. In conventional semi-
conductor junctions, there is considerable additional cur-
rent at the valley voltage due to recombination via defect
states in the band gap [14]. For NTs we expect a very low
density of such defects, because of the very strong bond-
ing between carbon atoms. Moreover, there are only a rela-
tively small number of atoms in the actual device region,
making it especially unlikely for a defect to be present
there.

Figure 2 also shows the I-V curve for the same device
embedded in a dielectric (modeled as discussed above).
The qualitative behavior is unchanged, with small shifts in
the peak and valley voltages. The peak-to-valley ratio is
still �104.

Our calculation of the charge density is accurate at low
current, so the I-V curve has correct value and slope both
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FIG. 2. I-V characteristics of the nanotube p-n junction. Solid
line is for a junction in vacuum, dotted is for a junction embed-
ded in a dielectric with e � 3.9.
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at low voltage and at the valley voltage. In the range of in-
terest, the maximum error occurs near the current peak. To
quantify the accuracy, we consider a complementary ap-
proximation that becomes accurate in the limit of high
transmission through the junction (P ! 1), where a negli-
gible fraction of the voltage drop occurs across the junc-
tion. In this case the electrons moving left-to-right obey the
Fermi distribution of the left lead, while those moving
right-to-left obey the distribution of the right lead. Thus the
total charge is well approximated by occupying the states
according to the arithmetic mean of the two Fermi functions.

This approximation always gives a higher current in the
range of interest, because the potential step is affected
very little by the voltage. In particular, the peak current
is increased by a factor of 2. Since the actual transmission
probability at the peak is &1�2, our calculations probably
underestimate the peak current but by considerably less
than a factor of 2. Thus the NDR performance is even
better than that shown in Fig. 2.

The origin of the NDR is similar to that in planar junc-
tions [14]. Under a small applied bias, as in Fig. 1(b),
net current is generated due to tunneling of electrons from
filled conduction states on the n side to empty valence
states on the p side, with a high transmission probability
(�0.5). The current increases with the applied bias until
the Fermi levels align with the band edges on the opposite
side of the junction as shown in Fig. 1(c). (This condi-
tion for the maximum current is different from that in bulk
devices [14] because the NT density of states peaks at
the band edge.) Further increase in the voltage reduces
the range of energies where valence and conduction band
states overlap, leading to the NDR regime where current
decreases with increasing voltage. This NDR regime per-
sists until the valence and conduction band edges on oppo-
site sides of the junction align, as in Fig. 1(d). At this point
the current across the device is at a minimum. For larger
voltages, current transport occurs only through thermal ex-
citation of electrons over the potential step (thermionic
emission), and the device current increases exponentially
with increasing voltage.

We now consider an NDR device that does not require
doping of NTs. As illustrated in Fig. 3(a), the device con-
sists of a semiconducting single-wall NT with each end
embedded in a different metal. The metals are spaced apart
by a layer of dielectric material.

Conceptually, one can imagine fabricating such a device
beginning with a NT growing vertically from a surface
[15], and sequentially depositing a metal, a dielectric, and
a second metal. The dielectric may be replaced by a metal-
oxidation step, and we assume that the materials do not
grow on or wet the NT. Possible fabrication processes are
discussed further below.

Because the NT does not form covalent bonds with the
metal or dielectric, we focus on the limit of weak metal-NT
coupling. Then the matrix elements of the NT Hamiltonian
are unaffected by the presence of the metal, but charge
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FIG. 3. (a) Cross-sectional view of metal-nanotube-metal de-
vice. (b) Calculated I-V curves for this device. Solid, dashed,
and dotted curves are for electrode separations of L � 2, 5, and
10 nm, respectively. The inset of (b) shows the self-consistent
band diagram for the L � 5 nm case in equilibrium (V � 0).

transfer between metal and NT (and the resulting electro-
static potential) must still be included.

We take the metal on the right to have a work function
larger than the NT ionization potential, so that electrons
are transferred from the NT valence band to this metal.
The metal on the left has a work function smaller than the
NT electron affinity, so that electrons are transferred from
this metal to the NT conduction band. Deep within each
contact, the population of the NT bands will be determined
by equilibrium with that metal, giving an Ohmic contact.

The electrodes are modeled as semi-infinite ideal metals.
The embedded NT creates a cavity of radius R 1 s, where
s represents the van der Waals separation between the NT
and the metal. We assume a separation of 0.3 nm, but
varying s between 0.2 and 0.5 nm has little effect on our
results.

For our numerical calculations we again treat a (17, 0)
NT, self-consistently solving for the potential and charge
on the tube at room temperature and calculating the cur-
rent, as for the p-n junction. The thickness of the dielec-
tric layer separating the electrodes is varied between 2 and
10 nm. The two metal work functions are taken to be 1 eV
above and below the NT midgap (equivalent to the work
function of a metallic NT).

The inset of Fig. 3(b) shows the self-consistent band
alignment in equilibrium. Because of charge transfer be-
tween the metal and NT, the Fermi level is only about
4769
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FIG. 4. Sketch of a possible fabrication sequence (a)–(d) for
the metal-NT-metal device, in cross-sectional view. (e) Perspec-
tive view of one of the finished devices. The dotted box in (d)
shows the device region (as in Fig. 3a).

0.1 eV above or below the NT band edge. As for the case
of the degenerately doped p-n junction, filled conduction
states overlap in energy with empty valence states, permit-
ting tunneling and leading to NDR.

The calculated I-V curves are shown in Fig. 3(b). The
peak-to-valley ratio for this device is as high as 107 for
the 2 nm device, and even the 10 nm device has a peak-to-
valley ratio of 105. These are orders of magnitude larger
than for conventional planar devices [14], and are compa-
rable to or better than recently measured ratios in mono-
layers [16]. In general, there could be additional valley
current not accounted for in our calculation, due to direct
tunneling between the metals through the dielectric, or due
to perturbation of the NT electronic structure by the metal.
But tunneling through 5 nm of high-quality oxide should
be negligible, as long as the area is not excessive relative to
the dimensions of the active region. And a large increase in
valley current could be tolerated without significant degra-
dation of device performance.

Many strategies are possible for fabrication of the
metal-NT-metal device; and a sketch of one is shown in
Fig. 4. This is not intended as a realistic proposal for a
4770
specific process, but merely to illustrate the issues and
opportunities. The process begins by defining parallel
lines of the first metal on a substrate, and laying the NT
perpendicular to these lines to create a suspended NT
structure [Fig. 4(a)]. Then, more of the first metal is
deposited on the NT directly over the bottom contacts
to create embedded contacts [Fig. 4(b)]. (An alternative
method is to suspend the tube on insulating supports and
grow the metal lines where the NT is suspended.) To
create the dielectric layer, either the surface of the first
metal is oxidized [Fig. 4(c)] or a dielectric is deposited as
a blanket to cover the whole system. Lines of the second
metal are then deposited in alignment with the first metal
lines [Fig. 4(d)].

Fabrication of the devices described here poses many
practical challenges, but there appear to be no fundamen-
tal obstacles in principle. The possibility of integrated
fabrication, together with the nanoscale device dimen-
sions, high peak-to-valley ratios, and other desirable prop-
erties of NTs, makes these devices attractive candidates for
nanoelectronics.
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