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Quantum Phase Diagram of the t-Jz Chain Model
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We present the quantum phase diagram of the one-dimensional t-Jz model for arbitrary spin (integer
or half-integer) and sign of the spin-spin interaction Jz , using an exact mapping to a spinless fermion
model that can be solved exactly using the Bethe ansatz. We discuss its superconducting phase as a
function of hole doping n. Motivated by the new paradigm of high temperature superconductivity, the
stripe phase, we also consider the effect the antiferromagnetic background has on the t-Jz chain intended
to mimic the stripe segments.

PACS numbers: 71.10.Fd, 71.10.Pm, 74.20.Mn
Introduction.—Phase diagrams of generic models of
strongly interacting quantum particles are considered fun-
damental to understanding the complex physical behav-
ior of cuprate superconductors, heavy fermion, and related
compounds. It is rare to encounter situations where unam-
biguously these diagrams can be completely determined
and only a few exceptional cases are exactly solvable. It is
a purpose of this paper to show that the t-Jz chain belongs
to this latter class of models.

A new paradigm in superconductivity springs up as a
consequence of the growing body of experimental evidence
suggesting that the quantum state of high temperature
superconductors is a striped phase. Unlike conventional
conductors where the charge carriers distribute in an spa-
tially homogeneous way, the stripe paradigm assumes that
carriers cluster into quasi-one-dimensional (1D) channels.
These channels act as domain walls separating different
antiferromagnetic (AF) domains. It is remarkable that
experiments are consistent with a spin ordering that is
p shifted across the wall [1], indicating the topological
character of these extended defects [2].

Motivated by this new paradigm Ref. [3] argued that
planar models, with appropriate inhomogeneous magnetic
terms, breaking translational and local spin SU�2� symme-
tries are appropriate to understanding neutron scattering
and angle-resolved photoemission experiments in cuprates
[4]. It is interesting to understand why spin anisotropies
are relevant to obtain substantial pair hole binding and
whether the stripes themselves have important supercon-
ducting fluctuations. The simplest representation of a
stripe segment is realized by a t-Jz chain model.

Model Hamiltonian.—The Hamiltonian representing
the 1D t-Jz model with L sites (equal to the length of the
chain, i.e., lattice constant a � 1) and M holes with open
boundary conditions (BC) [5] [the thermodynamic limit
(TL), L,M ! ` with n � M�L finite, is performed at
the end of the calculation], for arbitrary half-integer spin
S, is Ĥ � T̂ 1 ĤJz with

T̂ � 2t
L21X
a�1

s[�2S,S�

T̂a,s , T̂a,s � cyasca11s 1 H.c. ,
0031-9007�00�85(22)�4755(4)$15.00
ĤJz � Jz
L21X
a�1

SzaS
z
a11, Sza �

X
s[�2S,S�

scyascas .

Here, cyas �cas� creates (annihilates) a fermion of z spin
component s in a Wannier orbital centered at a. The
Hilbert space of states corresponds to a constrained space
with no doubly occupied sites [6].

Consider the set of parent states, labeled by the string
configuration �s , with M holes and L 2 M quantum par-
ticles, jF0� �s ��, defined as

jF0� �s �� � js1s2s3 · · · sL2M| {z }
L2M

± ± ± ± ±· · ·| {z }
M

� , (1)

where sa indicates the z component of the spin of the
particle at site a. These states are eigenstates of ĤJz with
energy EM� �s � � Jz

PL2M21
a�1 sasa11, and z component

of the total spin Sz �
PL2M

a�1 sa .
From a given parent state one can generate a subspace of

the Hilbert space M � �s � by applying the hopping operators
T̂a,s to the parent state and its descendants jFi� �s ��,

jF1� �s �� � T̂L2M,sjF0� �s �� , (2)

or, in general,

jFi� �s �� � T̂a,sjFj� �s �� . (3)

The dimension D of the subspace M� �s � is � LM �. More-
over, these different subspaces are orthogonal and are not
mixed by the Hamiltonian Ĥ, although they can be degen-
erate. In the following we will consider only the AF case
Jz . 0. At the end we will discuss two important general-
izations: the ferromagnetic (FM) Jz , 0 and the arbitrary
integer spin hard-core boson cases.

Among all possible initial configurations the one
corresponding to the Néel string �s0 [i.e., sa � �21�aS],
which is twofold degenerate, turns out to be special.
We want to show now that for a given number of holes
M the subspace generated by the Néel parent state,
M� �s0� � M0, contains the ground state. To this end,
one has to realize that the kinetic energy matrix elements
�Fi� �s �jT̂ jFj� �s �� are the same for the different sub-
spaces M . Nonetheless, the magnetic matrix elements
�Fi� �s �jĤJz jFj� �s �� � dijAi� �s � are different for the
different subspaces, with Ai� �s0� # Ai� �s � [7]. Notice
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that if one assigns sa � 0 to the presence of a hole at
site a, then Ai� �s � � Jz

PL21
a�1 sasa11. Therefore, the

Hamiltonian matrices HM
i,j (of dimension D 3 D ) in

each subspace M , consist of identical off-diagonal matrix
elements (HM

i,j � HM0

i,j , i fi j) and different diagonal
ones. These Hermitian matrices can be ordered according
to the increasing value of the energy EM of their parent
states (for fixed L and M). For any EM� �s � , EM� �s 0�,
HM0

� HM 1 B, where B is a positive semidefinite
matrix. Then, the monotonicity theorem [8] tells us that

Ek� �s � # Ek� �s 0� ; k � 1, . . . ,D , (4)

where Ek� �s �’s are the eigenvalues of HM arranged in in-
creasing order [Ek� �s � # Ek11� �s �]. Therefore, we con-
clude that the lowest eigenvalue of Ĥ must be in M0, is
E1� �s0�, and is twofold degenerate [9].

Spinless fermion mapping.—The next step consists in
showing, within the ground state subspace M0, that the
Hamiltonian Ĥ maps into an attractive spinless fermion
model. If one makes the following identification

j "#"# · · ·| {z }
L2M

± ± ± ± · · ·| {z }
M

� ! j≤ ≤ ≤ ≤ · · ·| {z }
L2M

± ± ± ± · · ·| {z }
M

� , (5)

i.e., any spin (c
y
aS or c

y
a2S) maps into a single spinless

fermion (bya) in M0, it is straightforward to show that
all matrix elements of HM0 are identical to the matrix
elements of the interacting quantum lattice gas

H � 2t
L21X
a�1

�byaba11 1 H.c.� 2 JzS
2
L21X
a�1

nana11 (6)

in the corresponding new basis. In Eq. (6), na � byaba .
Quantum phase diagram.—The attractive spinless

fermion model of Eq. (6) certainly has a superconducting
phase (i.e., correlation exponent Kr . 1) [10]. For arbi-
trary values of JzS2, t, and hole density n, the spinless
model is equivalent (via a Jordan-Wigner transformation)
to a Heisenberg-Ising spin- 1

2 chain (also known as XXZ
model) with Hamiltonian [11]

Hxxz �
LX

a�1

J��sxas
x
a11 1 syas

y
a11� 1 Jk�szas

z
a11 1 sza�

(7)

and J� � 2t, Jk � 2JzS2. In this new representation the
spin up (down) density is n (1 2 n). J� � 0 represents
the classical Ising limit while Jk � 0 is the extreme quan-
tum limit (XY model). In general, the exchange anisotropy
parameter D � Jk�J� , 0 determines the physical nature
of the correlations while J� defines the energy scale.

There is a vast literature on this model that was exactly
solved by the Bethe ansatz [12]. For jDj , 1, solutions of
this model belong to the universality class called “Luttinger
liquids” [13], with correlation functions characterized by
power laws with nonuniversal exponents continuously de-
pending on D. The correlation exponent Kr is deter-
mined from
4756
Kr �
p

2
n2kyr � p

s
n2kDc

2
, (8)

where the Drude weight (or charge stiffness) Dc is related
to the velocity of charge excitations yr by Dc � yrKr�p

with Dc � 1
2≠2e�F��≠�F�L�2 as usual [10], and k is the

isothermal compressibility. On the other hand, k can be
calculated from the variation of the ground state energy per
site e�n� as �n2k�21 � ≠2e�≠n2.

At n � 1�2, several quantities and properties are known
in closed analytic form. There is a Mott transition at D � 1
(umklapp scattering becomes relevant at D � 1, while it
is irrelevant for jDj , 1). Moreover, the exact expres-
sions for Kr and yr can be determined from the Bethe
ansatz [14]

Kr �
p

4�p 2 m�
, yr �

pt sinm

m
, (9)

which impliesDc � pt sinm��4m�p 2 m�� with cosm �
D. The energy per site (jDj , 1) is given by

e�1�2� �
Dt
2

2 2t sinm
Z `

0
dx

sinh�p 2 m�x
coshmx sinhpx

. (10)

Thus, one obtains 1
2 # Kr # 1 in the region 0 $ D $

21�
p

2, and Kr . 1 (superconducting correlations domi-
nate at large distances) for 21 , D , 21�

p
2. At D �

21, there is a transition to a phase segregated state (k �
2m��pt sinm�p 2 m�� diverges).

For D � 0, the system reduces to a free spinless fermion
system with energy per site e � 2

2t
p sin�pn�, stiffness

Dc � 2e�2, and k21 � 2p2n2e. This trivially corre-
sponds to Kr � 1

2 . Also the cases n ! 01 and n ! 12

map to free fermions independently of the value of D,
therefore, Kr ! 1

2 . The value D � 21 is also special:
After the unitary transformation sx,y

a ! �21�asx,y
a , the

Hamiltonian Hxxz maps into the FM Heisenberg model in
a magnetic field Jk [full SU�2� symmetry is recovered].
Here e � 2

t
2 1 � 1

2 2 n�, implying the opening of a gap
with a diverging k, i.e., D � 21 determines the line of
phase segregation for all densities n.

Away from n � 1�2 and the special limiting cases dis-
cussed above, the quantities Kr and yr are obtained from
the numerical solution of the Bethe ansatz integral equa-
tions [15,16]. To calculate yr one needs to determine hole
excitations with a well-defined momentum q and energy
De with respect to the ground state e. We find the velocity
of this elementary excitation from yr � limq!0dDe�dq,
and together with the numerical second order derivative
of e�n�, we determine the correlation exponent Kr . For
jDj , 1 the excitations are gapless. The resulting quan-
tum phase diagram is shown in Fig. 1(a). Notice that the
largest superconducting region corresponds to n � 1�2.

It is interesting to determine the influence of the anti-
phase domain wall (ADW), associated with each charge,
on the spin-spin correlations of the metallic and the
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FIG. 1. Quantum phase diagrams of the (a) t-Jz chain, and
(b) modified t-Jz model which includes the effects of the AF
background where the chain is embedded [n [ �0, 1�]. There
are three different quantum phases: phase segregated (PS), su-
perconducting (SC), and metallic (C) phases. The last two be-
long to the “Luttinger liquid” universality class. Points with
Kr � 1 known in closed analytic form are �y1 � �2 1

p
2
, 1

2
�, �y2 �

�0, 2 2
p

2 �, and �y3 � �cos 5

9
p, 2

3
�.

superconducting phases. It is well known [17] that the
charge structure factor of the spinless model has a peak
at k � 2kF � 2pn. Since each charge of the effective
model carries an ADW, the spin structure factor, S�k�,
will peak at k � p 6 2pn in the metallic phase. In the
superconducting phase a broad peak at k � p is obtained
for S�k� since the pairs do not carry an ADW.

In the presence of a uniform magnetic field larger than
the critical value leading to a saturated ferromagnetic state,
the system maps onto a “repulsive” spinless model [Eq. (6)
with the opposite sign for the interaction term]. In this
way the magnetic field induces a transition from SC or PS
phases to a metallic phase. For the special case n � 1�2
and JzS2�2t . 1 the transition is to an insulating charge
density wave state.

Effect of AF boundaries on the chain.—We study now
the effect of the AF background in which our stripe seg-
ments are embedded. This background provides a strong
BC that results in an additional attractive (confining) poten-
tial for the holes on the stripe. In this way, an enhanced su-
perconducting region is expected. In fact, the influence of
the AF background on the stripe is equivalent to the effect
a staggered magnetic field (STM) Bs (see Fig. 2). Since
each hole carries an ADW, the staggered field gives rise to
a confining linear potential between the a and the a 1 1
holes for even a. Therefore, the effect of a STM is to bind
pairs of holes tightly by a string potential. These pairs
interact as hard-core bosons. In the very dilute limit one
expects these bosons to condense at T � 0 for any value of
Bs�t and Jz�t lower than some critical value which gives
rise to phase segregation.

In the limit Bs�t ¿ 1 the model can be solved analyti-
cally for any concentration of hole pairs. In this limit the
problem reduces to nearest-neighbors (NN) pairs of holes
moving into an AF background (see Fig. 2). Each pair can
hop to its NN with an effective hopping teff � 2t2��BsS 1

JzS2�. In addition, there is an attractive JzS2 interaction
between NN pairs which comes from the second term of
Eq. (6). If we map each pair into a spinless particle and
each spin into an empty site [18]

j ±± "#"# ±± "# · · ·| {z }
�L,M�

� ! j≤ ± ± ± ± ≤ ± ± · · ·| {z }
�L̃,M̃�

� , (11)

the problem reduces to the spinless Hamiltonian Eq. (6).
But as each pair is replaced by an effective particle, the
number of particles and the length of the chain for the
effective spinless problem are

L̃ � L 2
M
2

, M̃ �
M
2

, (12)

where ñ � M̃�L̃ � n��2 2 n�. Here, as in the FM case,
we can use closed or open BC. The sign that arises af-
ter a cyclic permutation of fermions is absorbed in the
BC. For an odd (even) number of fermions these BC are

FIG. 2. Schematic representation of the effect of an AF back-
ground on a stripe segment. In this picture we assume that
the concentration of holes in the stripe is such that there is no
p shift between AF domains. If there were antiphase domains,
then, there is no confining string potential even though two holes
still like to be in adjacent sites.
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periodic (antiperiodic). This corresponds to M � 4n 1 2
(M � 4n) of the original problem. The relations between
energies and charge velocities are [19]

e�n� � ẽ�ñ�
µ
1 2

n

2

∂
, yr�n� � ỹr�ñ�

2
2 2 n

,

(13)

where ẽ�ñ� and ỹr�ñ� are the energy per site and charge
velocity of the corresponding spinless model of concentra-
tion ñ. Therefore, simple algebraic manipulations lead to

Kr�n� � K̃r�ñ� �2 2 n�2, (14)

and the phase diagram is depicted in Fig. 1(b).
For completeness, we would like to mention that the

mapping of the low energy spectra of the t-Jz model into
the spinless Hamiltonian, Eq. (6), is also valid for the FM
case, i.e., Jz , 0. In this case, the magnetic background,
which is replaced by empty sites in the spinless model, is
FM. Notice, however, that the effective spinless model is
also attractive (D , 0). This implies that the dynamics of
the charge degrees of freedom in an AF background is the
same as in the FM one. But in the latter case, the charges
do not carry an ADW. Moreover, the mapping does
not depend upon the statistics of the quantum particles.
In other words, we could also apply these concepts to
constrained quantum particles with integer spin S, i.e.,
hard-core bosons. In the large spin S limit, the quantum
phase diagram of the t-Jz model approaches the one of the
isotropic t-J Hamiltonian. Notice, however, the qualitative
similarity between the phase diagram in Fig. 1(a) and the
one for the isotropic spin- 1

2 t-J model obtained numeri-
cally [20]. Finally, the solution can be trivially extended
to the t-Jz-V model, where V represents a NN density-
density interaction. The effect of V is simply to
renormalize the spinless fermion interaction in Eq. (6).
Furthermore, it is simple to prove that there is a family
of bilinear-biquadratic spin-1 chain Hamiltonians that can
be mapped onto a t-Jz-V model and, therefore, its low
energy physics is exactly solvable [21].

In summary, we presented the exact quantum phase dia-
gram of the t-Jz chain model for arbitrary spin S, particle
statistics, and sign of the magnetic interaction Jz . We also
exactly determined the phase diagram of a modified t-Jz
chain that includes the effects of a strong antiferromagnetic
background. While a superconducting phase exists in both
cases, this phase is more prominent in the latter. Metallic,
superconducting and segregated phases characterize these
two phase diagrams.
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