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Nuclear Multifragmentation in Nonextensive Statistics: Canonical Formulation
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We apply the canonical quantum statistical model of nuclear multifragmentation generalized in the
framework of recently proposed Tsallis nonextensive thermostatistics for the description of the nuclear
multifragmentation process. The test calculation in the system with A � 197 nucleons shows strong
modification of the “critical” behavior associated with the nuclear liquid-gas phase transition for small
deviations from the conventional Boltzmann-Gibbs statistical mechanics.
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Most of the fragmenting systems are characterized by
strongly off-equilibrium processes which cease due to dis-
sipation. The theoretical description of the fragmenta-
tion process depends on whether the equilibrium has been
reached before the system starts fragmenting. If the equi-
librium is attained, then the thermodynamic models us-
ing different statistical ensembles in a given fixed volume
(freeze-out volume) can be applied. The ingredients spe-
cific for the considered phenomenology enter through the
definition of fragment sizes and (binding) energies, frag-
ment internal excitation properties, system size, conserved
quantities in this process, etc. In nuclear physics, sev-
eral models of this kind have been tried with unquestion-
able success in describing the transitional phenomenon in
heavy ion collisions from the regime of particle evapora-
tion at lower excitation energies to the explosion at about
5–10 MeV�nucleon of the hot source accompanied by the
copious production of the intermediate mass fragments
[1–3]. The situation when the fragment production has to
be considered as an off-equilibrium process is described by
various kinetic equations, mainly on the level of one-body
distribution functions [4]. Here the statistical equilibrium
is not assumed but the kinetic models in turn are plagued
by the insurmountable conceptual difficulties in the calcu-
lation of asymptotic, observable features of the fragments.
As an attempt to overcome at least some of these diffi-
culties in both groups of models, in this work we extend
the thermodynamic (canonical) model of the fragmentation
in the framework of the recently proposed thermostatistics
[5] (see [6] for recent references) to include certain off-
equilibrium correlations in the system. The Tsallis’ gener-
alized statistical mechanics (TGSM), which provides the
basis for generating this new model, is based on an alter-
native definition for the equilibrium entropy of a system
whose ith microscopic state has probability p̂i:
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p̂i � 1 , (1)

and q (entropic index) defines a particular statistics. En-
tropy Sq has the usual properties of positivity, equiproba-
bility, concavity, and irreversibility and preserves the
0031-9007�00�85(22)�4691(4)$15.00
Legendre transformations structure of thermodynamics.
In the limit, q ! 1, one obtains the usual Boltzmann-
Gibbs formulation of the statistical mechanics. The main
difference between the Boltzmann-Gibbs formulation
and the TGSM lies in the nonadditivity of the entropy.
Indeed, for two independent subsystems A, B, such that
the probability of A 1 B is factorized into pA1B � pApB,
the global entropy verifies

Sq�A 1 B� � Sq�A� 1 Sq�B� 1 �1 2 q�Sq�A�Sq�B� .
(2)

TGSM provides a natural framework for the thermody-
namical formalism of the anomalous diffusion and ubiq-
uity of Levy distributions [7]. Long-range correlations in
the system, as appearing in the situation of the thermaliza-
tion of a hot gas penetrating in a cold gas in the presence of
long-range interactions, are typical for q . 1 [8]. In some
cases, the entropic index q in TGSM can also be related
to the fluctuations of the temperature in the system [9]. A
variety of the off-equilibrium situations which can be ac-
counted for within the TGSM make it useful as a basis for
the generalization of the thermodynamical fragmentation
models and, in particular, in addressing the problem of the
influence of these nonextensivity correlations on the signa-
tures of “criticality” in finite systems. In the context of nu-
clear multifragmentation, this is usually referred to as the
signatures of liquid-gas phase transition in small systems.

Our starting point is the canonical multifragmentation
model [10] with the recurrence equation method [10,11]
which makes the model solvable without the Monte Carlo
technique and transparent to the physical assumptions and
generalizations. The canonical ensemble method in TGSM
was discussed in [12]. The main ingredient of the TGSM
generalization of the canonical fragmentation model [10]
is the expression for the fragment partition function:

Zq�s, t� �
X

�p

�1 1 q1b´ �p�s, t��21�q1 , (3)

where q1 � q 2 1, s and t are the fragment mass number
and charge number, respectively, and the fragment partition
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probability equals

p̂ �p�s, t� � �Zq�s, t��21�1 1 q1b´ �p�s, t��21�q1 , (4)

where ´ �p�s, t� � p2�2M 1 U�s, t�, b � 1�T . The in-
ternal energy U includes the fragment binding energy, the
excitation energy, and the Coulomb interaction between
fragments in the Wigner-Seitz approximation [2]. Chang-
ing summation into the integration in (3) one gets

Zq�s, t� �
gVf

l
3
T

G�q21
1 2 3�2�G21�q21
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3 q
23�2
1 �1 1 q1bU�s, t��2 1

q1
13�2

, (5)

where g is the spin degeneracy factor, Vf is the free vol-
ume, and lT � ��2p���MT ��1�2, where M is the mass of
the fragment �s, t�. In the limit q ! 1, one recovers the
familiar expression Z1 � gVfl

23
T exp�2bU�.

Given the partition function, the mean value of any
quantity in TGSM is [5]

�O �q �
X

�p

O �pp̂
q
�p . (6)

For the average energy of fragment �s, t� one obtains

�´�s, t��q � 2
≠

≠b

µ
1 2 �Zq�s, t��2q1

q1

∂
. (7)

In the dilute gas approximation [13], a partition function
of the whole system can be written as follows:

Qq�A, Z� �
X

n̂[PA,Z

Y
s,t

£
Zq�s, t�

§
Nn̂�s,t�

Nn̂�s, t�!
, (8)

where the sum runs over the ensemble PA,Z of differ-
ent partitions of A and Z of the decaying system: 	n̂
 �
	Nn̂�1, 0�, Nn̂�1, 1�, . . . , Nn̂�A, Z�
 and Nn̂�s, t� is the num-
ber of fragments �s, t� in the partition 	n̂
. In this ap-
proximation, the recurrence relation technique [10] can be
4692
applied providing the exact expression for Qq�A, Z�:

Qq�A, Z� �
1
A

X
s,t,s;s2t,A2Z

sZq�s, t�

3 Qq�A 2 s, Z 2 t� . (9)

These relations can now be conveniently used to calculate
ensemble averaged characteristics. However, in order to
ensure the proper normalization, it is better to work with
generalized averages [12]:

��O ��q � �O �q��1�q . (10)

These normalized mean values exhibit all convenient prop-
erties of the original mean values (6). Moreover, when
the normalized mean values (10) are used, the TGSM
can be reformulated in terms of ordinary linear mean val-
ues calculated for the renormalized entropic index q� �
1 1 �q 2 1��q. In particular, the total average energy of
the system becomes

Eq �
X
s,t

�N�s, t��q�AZ�´�s, t��q� , (11)

where �´�s, t��q� is given in (7) and

�N�s, t��qAZ � Zq�s, t�
Qq�A 2 s, Z 2 t�

Qq�A, Z�
. (12)

Analogously, the heat capacity (� ≠Eq�≠T jV ) is

CV � b2

( X
s,t

X
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where

�D�st; s0t0��q � �N�s, t�N�s0, t0��qAZ

2 �N�s, t��qAZ�N�s0, t0��qAZ

and
�N�s, t�N�s0, t0��qAZ � Zq�s, t�Zq�s0, t0�
Qq�A 2 s 2 s0, Z 2 t 2 t0�

Qq�A, Z�
1 dss0dtt0Zq�s, t�

Qq�A 2 s, Z 2 t�
Qq�A, Z�

. (14)
Figure 1 shows the caloric curve for different values of
the entropic index q $ 1 in the above described canonical
multifragmentation model. The calculations are done for
the system with Z0 � 79 protons and N0 � 118 neutrons
(A0 � 197). The free volume is Vf � 3A0�r0 � A0�rf ,
where r0 � 0.168 fm23. The excitation energy is E� �
Eq�T , rf� 2 Eq�T � 0, r0�. Curves T �E��A0� for differ-
ent q are very similar outside of the “critical zone” of ex-
citation energies: E��A0 [ �2.5 10� MeV. On the other
hand, a strong sensitivity to even tiny changes of q can
be seen inside the critical zone. The same data of the
ALADIN Collaboration for the reaction 197Au 1 197Au
at Elab�A � 600 MeV [14] have been analyzed indepen-
dently by Műller et al. [15] (filled points) and Majka et al.
[16] (open points) using different prescriptions for the se-
quential decay correction and for the determination of the
excitation energy. This causes the differences mainly at
higher temperatures and excitation energies. In this ex-
periment, mass/charge of the fragmenting system varies
with the excitation energy due to the participant-spectator
geometry of the reaction. The data exhibit a plateau which
is seen in our model for q * 1.0005.

This fragility of equilibrium (q � 1) “critical behavior”
to the small changes of the entropic index can be seen even
better in Fig. 2 which shows the specific heat vs the tem-
perature. The increase of the entropic index q is associated
with both a significant sharpening of the peak in CV and
an increase of the “critical” temperature TC . Since this in-
crease of TC is accompanied by only a small change of the
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FIG. 1. The “caloric curve” for the system with A0 � 197
nucleons is plotted for various values of the entropic index q: 1
(the solid line), 1.0005 (the dashed line), and 1.001 (the dotted
line). For the description of the ALADIN data (filled [15] and
empty [16] points), see the text.

total excitation energy (see Fig. 1), therefore the kinetic
part in the total energy increases with q. In other words,
the multifragmentation in statistical systems with q . 1
takes place in the hotter environment than in the limiting
equilibrium case q � 1.

It is an open question whether the correlations for q fi 1
change the nature of the equilibrium “phase transition.”
Whereas the liquid-gas phase transition is characterized by
properties of the largest cluster [17], the shattering phase
transition in off-equilibrium systems is characterized by
the multiplicity of fragments [18]. Figure 3 shows the av-
erage multiplicity dependence of the normalized second
factorial cumulant moment of the multiplicity distribution:
g2 � ����m�m 2 1�� 2 �m�2�����m�2. g2 is a measure of the
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FIG. 2. The specific heat is plotted for various values of the
entropic indices q. For the description of lines, see the caption
of Fig. 1.
fragment-fragment correlations and equals 0 for the Pois-
son distribution. One can see a strong buildup of multiplic-
ity fluctuations with increasing q in the “critical region.”
This enhancement of g2 is associated with the strong peak
in CV as seen in Fig. 2. For q � 1.001, the maximum of
g2 is comparable with those found in the 2D and 3D per-
colation systems of comparable size [19].

The fragment-size distributions dN�dA at T � TC for
different q values are shown in Fig. 4. One can see the
significant evolution of dN�dA with an increasing entropic
index which, together with the evolution of multiplicity
distributions (see Fig. 3), illustrate the change of mecha-
nism of the multifragmentation. At T � TC , one finds
approximately a powerlike fragment-size distribution for
q � 1 and the persistence of the heaviest residue for
q . 1. The critical zone for q . 1 is associated with the
exponential fragment-size distribution, like the inside of
the spinodal region of the liquid-gas phase diagram or in
the off-equilibrium critical binary fragmentation process
with the Gaussian dissipation [20]. For T�TC . 1 and
q . 1, the heavy residue explodes into the large number
of light fragments and the fragment-size distribution
remains exponential.

In conclusion, we have developed the generalization of
the canonical multifragmentation model in TGSM. This
new model provides an alternative way of thinking about
intuitively expected deviations from the thermodynamical
equilibrium due to nonextensive correlations in the multi-
fragmentation process. We see the main advantage of the
proposed approach in the preservation of both the mathe-
matical structure of thermodynamics and the correct de-
scription of fragments as in the standard thermodynamical
models. Variability of different signals of equilibrium
phase transition with respect to small deviations from
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FIG. 3. The normalized second factorial cumulant moment of
the fragment multiplicity distribution is plotted as a function of
the average multiplicity for various entropic indices q. For other
information, see the caption of Fig. 1.
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FIG. 4. The fragment-size (mass) distribution is plotted for
different entropic indices and temperatures normalized by TC .
For the description of lines, see the caption of Fig. 1.

q � 1 demonstrates that the characterization of nuclear
phase transition in terms of finite-size scaling analysis may
be hazardous. All considered characteristics change quali-
tatively with q in the critical zone and one cannot exclude
that even the order of the phase transition changes. It
should be stressed that the small nonextensive corrections
considered in this work would be impossible to detect
in the particle/fragment energy spectra which for very
small deviations from q � 1 would remain exponential
as in the ordinary equilibrium thermodynamics. The new
flexible family of fragmentation models obeying q statis-
tics provides a powerful tool in analyzing experimental
data and in characterizing possible deviations from an
idealized equilibrium phase-transition picture in nuclear
multifragmentation in terms of the entropic index.
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